
Recovery of high-level 
intermediate representations
of algorithms from binary code

Alexander Borisovich Bugerya[1], Ivan Ivanovich Kulagin[2], Vartan Andronikovich Padaryan[2, 3],

Mikhail Aleksandrovich Solovev[2, 3], Andrei Yur'evich Tikhonov[2]

[1] Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia

[2] Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia

[3] Lomonosov Moscow State University, Moscow, Russia

Email: shurabug@yandex.ru, {i.kulagin, vartan, icee, fireboo}@ispras.ru

IVANNIKOV MEMORIAL WORKSHOP, VELIKIY NOVGOROD, SEPTEMBER 13-14, 2019



FLAWS IN APPLICATION LOGIC

2

• Flaws in application logic are hard to find

• This requires developing a program behavior model before model violations
can be detected

• One of the approaches that do not require specifying a model
is dynamic taint analysis

- Its usage is hindered because false positives and negatives

- The actual data transformations are typically not considered

• To solve these problems, a human analyst is involved

• Analyst actions are automated to a certain degree by various tools
(Trawl, Ghidra, Binary Analysis Platform – BAP, etc.)



FLAWS IN APPLICATION LOGIC

3

• The order of analyst actions is based on expert knowledge,
and often involves a large amount of manual work

• The hard degree and the result quality of manual analysis 
depend on representation of the algorithm

• Existed intermediate representations (IR) are unsuitable

• Compilers IR
(GENERIC, GIMPLE, RTL in GCC; LLVM IR; Program dependence graph)

• IR of modeling machine instructions and binary analysis
(Pivot/Pivot2[1], B2R2[2], REIL[3], MAIL[4], BAP (BIL)[5], BitBlaze[6], ESIL[7], etc.)

[1] – M.A. Solovev, M.G. Bakulin, M.S. Gorbachev, D.V. Manushin, V.A. Padaryan, S.S. Panasenko. Next generation intermediate representations for binary code analysis.
[2] – Jung, Minkyu and Kim, Soomin and Han, HyungSeok and Choi, Jaeseung and Kil Cha, Sang. B2R2: Building an Efficient Front-End for Binary Analysis.
[3] – T. Dullien and S. Porst. REIL: A platform-independent intermediate representation of disassembled code for static code analysis.
[4] – S. Alam, R. N. Horspool and I. Traore. MAIL: Malware Analysis Intermediate Language: A Step Towards Automating and Optimizing Malware Detection.
[5] – D. Brumley, I. Jager, T. Avgerinos and E. J. Schwartz. BAP: A Binary Analysis Platform.
[6] – D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam and P. Saxena. BitBlaze: A New Approach to Computer Security via Binary Analysis.
[7] – ESIL: Radare2 book. URL: https://radare.gitbooks.io/radare2book/content/disassembling/esil.html.



HIGH-LEVEL ALGORITHM REPRESENTATION

4

• Currently there is a lack of tools that could build from binary code
hierarchical flowchart-based algorithm representation
that is suitable for manual analysis

• It is needed to propose:

• A high-level hierarchical representation of an algorithm based on flowcharts

• Algorithm of whole-system binary code analysis that builds such a representation

• The proposed solution should not rely on any kind of code markup

• The proposed representation should be suitable for manual analysis
and for implementing automatic data flow analysis algorithm in context of finding 
undocumented software features



HIERARCHICAL

HIGH-LEVEL ALGORITHM REPRESENTATION

• High-level hierarchical flowchart-based representation of an 
algorithm is based on hypergraph

• Representation has two kinds of nodes

1. Points (𝒑𝒊) – represent an instruction
executed at a certain trace step

2. Buffers 𝒃𝒊 – represent a region of an abstract memory 
model (which can be an actual contiguous memory 
address range, a register or a part thereof)
at a certain trace step

• Edges describe data dependencies

• Point nodes can be grouped into subsets – fragments (𝒇𝒊)

• Fragment nodes can be grouped into superblocks (𝒔𝒊)

𝑠0

𝑓0 𝑝0

𝑏0

𝑓1

𝑝1

𝑏1

𝑝2

𝑠1

𝑏2

𝑓2

𝑝3

𝑏3

𝑝4

𝑏4

5



HIERARCHICAL

HIGH-LEVEL ALGORITHM REPRESENTATION

• Logically connected buffer nodes can be grouped into subsets 
called superbuffers

3. Fragment nodes (𝒇𝒊) – correspond to code fragments
in the trace (linear step sequences
such that there are no call
or return instructions within them)

4. Superblock nodes (𝒔𝒊) – correspond to instances of function 
calls and therefore can only contain fragments 
that belong to a single function instance

5. Superbuffer nodes (𝑩𝒊) – logically connected buffer nodes

• Superbuffers and buffers correspond to data structures in the 
program and define interoperation interfaces between fragments 
and superblocks

𝑠0

𝑓0 𝑝0

𝑏0

𝑓1

𝑝1

𝑏1

𝑝2

𝑠1

𝑏2

𝑓2

𝑝3

𝑏3

𝑝4

𝑏4

6



CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

7

• The basis of constructing the high-level representation is the backward slicing algorithm
used to track data flow in reverse step order

• Representation of an algorithm is built only from points (trace steps)
that contribute to forming the result buffer

• Input of the construction algorithm:

• Start buffer 𝑏:< 𝑎, 𝑙 > is a result buffer of the algorithm being analyzed 
(𝑎 – begin address of buffer; 𝑙 – length of buffer)

• Trace 𝑡 where execution of the analyzed algorithm had been recorded

• Functions call information 𝐶



CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

• The construction algorithm performs two main steps:

1) discovery of points in trace that belong to the algorithm forming the start buffer
and their grouping into fragments (createPointsAndFragments)

2) grouping fragments into superblocks (createSuperblocks)



CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

9

• The construction algorithm performs two main steps:

1) discovery of points in trace that belong to the algorithm forming the start buffer
and their grouping into fragments (createPointsAndFragments)

2) grouping fragments into superblocks (createSuperblocks)

𝑓0 𝑝0

𝑓1 𝑝1

createPointsAndFragments

𝑏 < 𝑎, 𝑙 >

𝑡 – trace

𝐶 – call info



CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

10

• The construction algorithm performs two main steps:

1) discovery of points in trace that belong to the algorithm forming the start buffer
and their grouping into fragments (createPointsAndFragments)

2) grouping fragments into superblocks (createSuperblocks)

𝑠0 𝑓0 𝑝0

𝑏0

𝑠1

𝑏1

𝑓1 𝑝1

𝑏 < 𝑎, 𝑙 >

createSuperblocks

𝑓0 𝑝0

𝑓1 𝑝1



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

AES encryption program

key = GenerateKey()

text = ReadText()

cipher = aes(key, text)

● ● ● ●

𝑝0 ● ● ● ● ● 𝑝9 ● ● ● ● ● 𝑝18 ● ● ● ● ● 𝑝27

𝑝1 𝑝2 𝑝3 ● ● ● 𝑝7 𝑝8 𝑝10 𝑝11 𝑝12 ● ● ● 𝑝16 𝑝17 𝑝19 𝑝20 𝑝21 ● ● ● 𝑝25 𝑝26

𝑝4 𝑝5 𝑝6 𝑝13 𝑝14 𝑝15 𝑝22 𝑝23 𝑝24

Execution order of instructions in trace

GenerateKey() ReadText() aes()

Execution trace

𝑝0 – call GenerateKey()

𝑝9 – call ReadText()

𝑝18 – call aes()
11



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

• The point set corresponds to the backward trace slice for cipher buffer

● ● ● ● ● ● ●

𝑝1 ● ● 𝑝7 𝑝10 𝑝11 ● 𝑝16 𝑝19 ● ● 𝑝25

𝑝4 𝑝5 𝑝13 𝑝22 𝑝23

𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8

𝑠0 𝑠1 𝑠2

12



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

1. Grouping into fragments (createPointsAndFragments)

13



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

1. Grouping into fragments (createPointsAndFragments)

𝑓0 = 𝑝1 , 𝑓1 = 𝑝4, 𝑝5 , 𝑓2 = 𝑝7 , 𝑓3 = 𝑝10, 𝑝11 , 𝑓4 = 𝑝13 ,
𝑓5 = 𝑝16 , 𝑓6 = 𝑝19 , 𝑓7 = 𝑝22, 𝑝23 , 𝑓8 = 𝑝25

14

𝑓7
𝑝23

𝑝22𝑓6 𝑝19

𝑓8 𝑝25

𝑓2 𝑝7

𝑓1
𝑝5

𝑝4

𝑓0 𝑝1

𝑓5 𝑝16

𝑓4 𝑝13

𝑓3
𝑝11

𝑝10



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

1. Grouping into fragments (createPointsAndFragments)

𝑓0 = 𝑝1 , 𝑓1 = 𝑝4, 𝑝5 , 𝑓2 = 𝑝7 , 𝑓3 = 𝑝10, 𝑝11 , 𝑓4 = 𝑝13 ,
𝑓5 = 𝑝16 , 𝑓6 = 𝑝19 , 𝑓7 = 𝑝22, 𝑝23 , 𝑓8 = 𝑝25

2. Grouping fragments into superblocks
(createSuperblocks)

15

𝑓7
𝑝23

𝑝22𝑓6 𝑝19

𝑓8 𝑝25

𝑓2 𝑝7

𝑓1
𝑝5

𝑝4

𝑓0 𝑝1

𝑓5 𝑝16

𝑓4 𝑝13

𝑓3
𝑝11

𝑝10



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

1. Grouping into fragments (createPointsAndFragments)

𝑓0 = 𝑝1 , 𝑓1 = 𝑝4, 𝑝5 , 𝑓2 = 𝑝7 , 𝑓3 = 𝑝10, 𝑝11 , 𝑓4 = 𝑝13 ,
𝑓5 = 𝑝16 , 𝑓6 = 𝑝19 , 𝑓7 = 𝑝22, 𝑝23 , 𝑓8 = 𝑝25

2. Grouping fragments into superblocks
(createSuperblocks)

𝑠0 = 𝑓0, 𝑓1, 𝑓2 , 𝑠1 = 𝑓3, 𝑓4, 𝑓5 , 𝑠2 = 𝑓6, 𝑓7, 𝑓8 .

16

𝑠2,
aes()

𝑓7
𝑝23

𝑝22𝑓6 𝑝19

𝑓8 𝑝25

𝑠0,
GenerateKey()

𝑠1,
ReadText()

𝑓2 𝑝7

𝑓1
𝑝5

𝑝4

𝑓0 𝑝1

𝑏0

𝑏1

𝑏2

𝑏3

𝑓5 𝑝16

𝑓4 𝑝13

𝑓3
𝑝11

𝑝10

𝑏4

𝑏5

𝑏6

𝑏7

𝑏8 𝑏9

cipher



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

• The hierarchical organization of the representation
is suitable for the algorithm research in manual mode 
(because excess details can be elided through folding 
fragments and/or superblocks)

17

𝑠2,
aes()

𝑓7
𝑝23

𝑝22𝑓6 𝑝19

𝑓8 𝑝25

𝑠0,
GenerateKey()

𝑠1,
ReadText()

𝑓2 𝑝7

𝑓1
𝑝5

𝑝4

𝑓0 𝑝1

𝑏0

𝑏1

𝑏2

𝑏3

𝑓5 𝑝16

𝑓4 𝑝13

𝑓3
𝑝11

𝑝10

𝑏4

𝑏5

𝑏6

𝑏7

𝑏8 𝑏9

cipher



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

• The hierarchical organization of the representation
is suitable for the algorithm research in manual mode 
(because excess details can be elided through folding 
fragments and/or superblocks)

Fold fragments 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8

18

𝑠2,
aes()

𝑓7
𝑓6

𝑓8

𝑠0,
GenerateKey()

𝑠1,
ReadText()

𝑓2

𝑓1

𝑓0

𝑏0

𝑏1

𝑏2

𝑏3

𝑓5

𝑓4

𝑓3

𝑏4

𝑏5

𝑏6

𝑏7

𝑏8 𝑏9

cipher



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

• The hierarchical organization of the representation
is suitable for the algorithm research in manual mode 
(because excess details can be elided through folding 
fragments and/or superblocks)

Fold fragments 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8

Fold superblocks 𝑠0, 𝑠1, 𝑠2

19

𝑠2,
aes()

𝑠0,
GenerateKey()

𝑠1,
ReadText()

𝑏0

𝑏3

𝑏4

𝑏7

cipher



EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

• The hierarchical organization of the representation
is suitable for the algorithm research in manual mode 
(because excess details can be elided through folding 
fragments and/or superblocks)

Fold fragments 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8

Fold superblocks 𝑠0, 𝑠1, 𝑠2

Fold entire diagram {𝑠0, 𝑠1, 𝑠2} → 𝑠3

20

𝑠3

cipher



CONCLUSIONS AND FUTURE WORKS

21

• The hierarchical high-level representation of a program’s algorithm has been proposed

• The representation is based on a hypergraph and permits analysis in manual and automatic settings

• Algorithm of whole-system binary code analysis that builds such a representation has been proposed

• Future works:

• Improving the quality of the representation by identifying high-level language constructs
(such as conditional and loop statements, etc.)
and recovering structural and type information for program variables

• Development of automatic methods of analysis of an algorithm’s properties
based on its high-level representation



Thank you for your attention!

22

Alexander Borisovich Bugerya[1], Ivan Ivanovich Kulagin[2], Vartan Andronikovich Padaryan[2, 3],

Mikhail Aleksandrovich Solovev[2, 3], Andrei Yur'evich Tikhonov[2]

[1] Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia

[2] Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia

[3] Lomonosov Moscow State University, Moscow, Russia

Email: shurabug@yandex.ru, {i.kulagin, vartan, icee, fireboo}@ispras.ru


