
Selective Instrumentation mechanism
and its application in a Virtual Machine

I.A. Vasilev
P.M. Dovgalyuk

V.A. Makarov
M.A. Klimushenkova

The relevance of selective instrumentation
Whole-system Instrumentation (WSI):

+ allows OS analysis and interprocess interaction analysis
+ analysis is performed isolated from program under the study
- often provides redundant information, which complicates and slows down the

analysis process

Selective Instrumentation:

+ approach, that narrows WSI mechanism and allows to instrument exactly the
necessary data and at the necessary moment

2

QEMU

How selective instrumentation works

3

Process identification
mechanism

Thread identification
mechanism

Memory access
identification mechanism

WSI

Conditions check
data

Selective
instrumentation

if true

Existing approaches
Application level instrumentation has an easy access to system related information
through the use of system API.

For whole system instrumentation:

- depends on agent-app inside of the system (Virtuoso);
- uses kernel structure data (DECAF)
- uses heavily os-dependant methods (PEMU)

4

Objective
To develop method(s) for process, thread and memory access identification, with
an ability to use gotten information for selective instrumentation and analytical
routines in general.

Developed method should not rely on kernel structures and should be relatively
easy for adaptation for new systems.

5

Process identification
OS allocates a PGD for every new process, because each process needs its own
address space.

Thus, each process must have a unique PGD value, which can be used to identify
it.

Watching for changes in this register we can detect switches between processes.

6

Implementation
Watching for changes in the corresponding register we are able to keep the table
of currently active processes. The value of this register should be used as an id to
determine an object for instrumentation process. Before actually performing
instrumentation current process is compared to ones, that are set as processes of
interest by an analyst, and by this comparison mechanism decides whether or not
to perform instrumentation.

The use of termination system calls allows to maintain an up-to-date process
table.

7

Thread identification
As one PGD value can (and most likely will) correspond to a couple of threads,
this value alone can not be used for identification.

But we also know, that every threads needs its own stack for variables and return
addresses storage.

To identify a thread one can use a pair of PGD value and SP values range.

8

Implementation
At any operation of instruction translation we are looking for ones, that are
explicitly or implicitly changing SP value.

Those changes are divided into two groups: one that contains operations,
leading to creation of a new range, and other that corresponds to the extension
of already existing ranges.

Create: pop esp; mov esp; return from kernel mode SP.

Extend: every other situation, when SP is somehow changed.

9

Improvement of implementation
If two ranges eventually begin to intersect, they need to be joined as one.

To determine thread termination, it is needed to detect a corresponding
system call.

The resulting approach also allows one to track fibers.

10

Memory instrumentation
We added callbacks for memory related operations, both for store in and load from
memory.

Corresponding callbacks were added both for translation and execution stages.

Thus, at any occurance of memory operations one can get corresponding
address, operation type, gotten or stored data, and then use gotten information to
perform analytical tasks.

11

Use cases:
- Debugging of specific processes, threads and even fibers
- Memory patching to change loading values
- Making a call stack to analyze program workflow
- Narrow approach to use of the instrumentation, which allows the achievement

of much more precise results

12

Memory patcher plugin

program

memory patcher

load operation

trying to load at 0x...

real data

substitute
data ✓

13

memory

Call stack plugin
Uses process identification and thread identification information.

1. Plugin checks executed instructions looking for a call to a new function, and
for each detected call it saves current context, thread and address.

2. Plugin looks for return functions and associate them with closest call
instructions.

In result, analyst can get a view of a current call tree for a specific context.

It also allows detection of workflow interceptions. To detect these plugin checks for
each return instruction if the new address is the same, as where the call was. If
they differ, it may be an indication of a malicious behavior.

14

Evaluation
We implemented approach for process identification for ARM and x86

Approach for thread identification is implemented for x86 architecture and was
successfully tested on Windows-family operating systems and Linux operating
systems. ARM implementation is yet at a stage of development.

Memory instrumentation relies completely on platform and architecture-agnostic
capabilities of qemu, so it was successfully tested for x86, ARM and MIPS
architectures.

15

Future work
- Thread identification for ARM
- Development of other instrumentation plugins

16

