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The Problem
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* How can we ensure that computation C(d) was performed correctly?

Coarrectly = semantics of C(x) has not been distored by the computation provider
neither intentionally (malicious party), nor by accident (software,
hardware bugs).




More General Problem
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* How can we ensure that C(d) was computed correctly?

* How to assure other users that C(d)=r was computed correct and
do it fast?
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Repeat computation
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Approaches

Digital Signature =7= Trust
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Approaches

Redundant computation
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Approaches

Approaches based on PCP-theorem

A C(x) ->A(x),>d |
W ‘L (r, cert) = A(d) “

check(A, d, r, cert) = {true | false}




Blockchain Protocols Properties
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Approaches

Smart-contract on a blockchain

C(x)
- C(d)
| r = C(d)

Smart-contracts on a public blockchain could solve
the problem, but their computing ability is too low.




Blockchain Protocol Sketch

é é ‘é (r, cert) = F(C, d)

Smart-Contract

» Check(C, d, r, cert) = True?




Basic Blockchain Protocol




Trust Model

* We do not trust Computation Providers 'per se'
(malicious actor, errors in computation, etc..)

« We do trust smart-contract, i.e. can inspect smart-
contract logic

» All participants are rational, i.e. everything they do is
motivated by an attempt to maximize their profit

» At least, 1 fair/correct motivated computation provider
available in the system
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Assumptions

* User program C(x) and initial data d is small
enough to be placed into the blockchain

* Program result C(d) is small enough to be placed
Into the blockchain

* Program (i.e. function) C(x) is terminating
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Meet SateComp

Main ideas of the protocol

* User program C(x) is transformed into iterative function
form f(x) , such that:
proj f (f (f (... f(inj(d)) ..) = C(d)
proj ((fix f) (inj d)) = C(d)
« Computation provider calculates values:
e c_.1 =H(d)
e c{i+ 1} =H(ci*f(ri))
* H(x) - secure hash-function
* Values <c_1, c 2, ..., c.k> forms a verifiable certificate




Meet SateComp

Main ideas of the protocol

Computation providers take a problem f(x), the point d , and compute
result r = f(..f(d)) together with a certificate cert

Provider publishes computed pair <r, cert> together with a
guarantee deposit. Such provider is called the solver.

Other computation providers that were late on submitting the answer
(called auditors in this case), do the check of the result and the
certificate

If error i1s found, the refutation is sent into the smart-contract. The
refutation consist of a triple: <c_{p-1}, c_p, r_ {p-1}>




Meet SateComp

Main ideas of the protocol

 Smart contract checks the refutation by performing only a
single computation step ¢.p = H(c_{p-1} * f(r_{p-1}))

* In case of refutation acceptance, the solver is punished by
paying the guarantee deposit fee. The problem is moved back
to 'published' state awaiting other solutions to be provided.

« At the end, all fair auditors and the final solver get
compensated using the total deposit (initial user deposit + all
guarantee deposits) of this computation task.




SateComp Protocol

C : Input — Output

el

f: Input' — Input'

inj 2, ‘X R, Suf(ih :th(%gd)
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Function in Iterative Form

Non-iterative form:

fact (0] -> fact : Nat » Nat
1;

fact [N)] when N > 0 ->
N * fact [N-1] .

lterative form:

FactFP ({0, Acc}] -> factFP : Nat * Nat = Nat * Nat
{0, Acc} ; injn) ={n, 1}

FactFP [{N, Acc}] when N > 0 -> proj({n, m}) = m
{N - 1, Acc * N} .

\forall n . fact (n) == proj((fix factFP) (inj n))




Function in Iterative Form

Non-iterative form;

] -> 1; C : Nat * Nat — Nat

:> 1;
-> C[N-1, M] + C[N-1,M-1].

Egpmgl Ac}:c%\]Ti> /{&'([:(]:,}]Acg};{T 1o fecl Cfp : list(Nat) * Nat -
- ’ + ACCj; i *
CFB[{[{O, “} | T1, Acc}) -> {T 1 + Acc}; ist(Nat) * Nat
Rt | T Acd] 2 R Ak injin, mb) = {1{n, m}1, 03
{[{N-1,M} | [{N-1,M-1} | T]], Acc}. proj({_, acc}) = acc




Related Works

truebit

https:/ltruebit.io
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