

 Cloud Computations Integrity Certification Protocol Cloud Computations Integrity Certification Protocol
Evgeny Shishkin
Evgeny Kislitsyn

The Problem
● How can we ensure that computation C(d) was performed correctly?

Correctly = semantics of C(x) has not been distored by the computation provider
 neither intentionally (malicious party), nor by accident (software,
 hardware bugs).

C(x), d

C(d) = r

More General Problem
● How can we ensure that C(d) was computed correctly?

● How to assure other users that C(d)=r was computed correct and
do it fast?

C(x), d, r

C(x), d, r

C(x), d

C(d) = r

Approaches
Repeat computation

C(d) = r ?

C(x), d

C(d) = r

sig(r) = sigR

Digital Signature =?= Trust

Check(sigR) ?= True

C(x), d

C(d) = r

Approaches

C(x), d

C(d) = r1

Redundant computation

C(d) = r2

C(d) = r3
r1 == r2 == r3 ?

Approaches

C(x) -> A(x), d

Approaches based on PCP-theorem
(r, cert) = A(d)

Approaches
check(A, d, r, cert) = {true | false}

Blockchain Protocols Properties
Immutable

business logic
programmed
as a smart-

contact

Transparent
data and

transactions
Value Exchange
within the system

High Availability

Massive
Fault-Tolerance

C(x)

Smart-contract on a blockchain
C(d)

Smart-contracts on a public blockchain could solve
the problem, but their computing ability is too low.

r = C(d)

Approaches

C(x), d

(r, cert) = F(C, d)

Smart-Contract

blockchain

r, cert

Check(C, d, r, cert) = True?

C(d) =?= r

Blockchain Protocol Sketch
C(x), d, r

Basic Blockchain Protocol
C(x), d

C(d)C(x), d

C'(d)

Trust Model
● We do not trust Computation Providers 'per se'

(malicious actor, errors in computation, etc..)
● We do trust smart-contract, i.e. can inspect smart-

contract logic
● All participants are rational, i.e. everything they do is

motivated by an attempt to maximize their profit
● At least, 1 fair/correct motivated computation provider

available in the system

Assumptions
● User program C(x) and initial data d is small

enough to be placed into the blockchain

● Program result C(d) is small enough to be placed
into the blockchain

● Program (i.e. function) C(x) is terminating

SafeComp Protocol
Protocol Participants

Computing
ProviderClient Computing

Auditor
Smart-Contract
on a BlockChain

Blockchain
Oracle Intruder

Computation
Request

Computation
processing/audition

Transparent reliable
refutation procedure

Trusted link
with an externel

Data Source

Wants to trick
the protocol for

profit

Meet SafeComp
● User program C(x) is transformed into iterative function

form f(x) , such that: proj f (f (f (… f (inj (d)) ..) = C(d) proj ((fix f) (inj d)) = C(d)
● Computation provider calculates values:

● c_1 = H(d)
● c_{i + 1} = H(c_i * f(r_i))
● H(x) - secure hash-function

● Values <c_1, c_2, … , c_k> forms a verifiable certificate

Main ideas of the protocol

Meet SafeComp
● Computation providers take a problem f(x), the point d , and compute

result r = f(..f(d)) together with a certificate cert
● Provider publishes computed pair <r, cert> together with a

guarantee deposit. Such provider is called the solver.

● Other computation providers that were late on submitting the answer
(called auditors in this case), do the check of the result and the
certificate

● If error is found, the refutation is sent into the smart-contract. The
refutation consist of a triple: <c_{p-1}, c_p, r_{p-1}>

Main ideas of the protocol

Meet SafeComp
● Smart contract checks the refutation by performing only a

single computation step c_p ≟ H(c_{p-1} * f(r_{p-1}))
● In case of refutation acceptance, the solver is punished by

paying the guarantee deposit fee. The problem is moved back
to 'published' state awaiting other solutions to be provided.

● At the end, all fair auditors and the final solver get
compensated using the total deposit (initial user deposit + all
guarantee deposits) of this computation task.

Main ideas of the protocol

SafeComp Protocol
d C(d)C : Input → Output

inj d R, such that proj R = C(d)f : Input' → Input'

Function in Iterative Form
fact (0) −>
 1;
fact (N) when N > 0 −>
 N * fact (N−1) .

FactFP ({0, Acc}) −>
 {0, Acc} ;
FactFP ({N, Acc}) when N > 0 −>
 {N − 1, Acc * N} .

fact : Nat → Nat

factFP : Nat * Nat → Nat * Nat
inj(n) = { n, 1 };
proj({n, m}) = m

\forall n . fact (n) == proj((fix factFP) (inj n))

Non-iterative form:

Iterative form:

Function in Iterative Form
C(1, _) −> 1;
C(_, 0) -> 1;
C(N, N) -> 1;
C(N, M) −> C(N-1, M) + C(N-1,M-1).

Cfp({[], Acc}) -> {[], Acc};
Cfp({[{1,_} | T], Acc}) -> {T,1 + Acc};
Cfp({[{0,_} | T], Acc}) -> {T 1 + Acc};
Cfp({[{N,N} | T], Acc}) -> {T,1 + Acc};
Cfp({[{N,M} | T], Acc}) ->
 {[{N-1,M} | [{N-1,M-1} | T]], Acc}.

C : Nat * Nat → Nat

Cfp : list(Nat) * Nat →
 list(Nat) * Nat

inj({n, m}) = {[{n, m}], 0};
proj({_, acc}) = acc

Non-iterative form:

Iterative form:

Related Works
https://truebit.io

Evgeniy Shishkin
Senior researcher

JSC «InfoTeCS»
127287, Moscow, Stariy
Petrovsko-Razumovskiy
proezd, 1/23, bld. 1

+7 (495) 737 61 92 (ext.4726)
evgeny.shishkin@infotecs.ru

https://unboxedtype.bitbucket.io

https://unboxedtype.bitbucket.io/

