p

Cloud Computations Integrity Certification

Protocol
=T &) Evgeny Shishkin %" @
1B ﬁ@ Evgeny Kislitsyn é@
G,

nfotecs

The Problem

/7 C(x), d ~
>
- | C(d) =r “
- -

* How can we ensure that computation C(d) was performed correctly?

Coarrectly = semantics of C(x) has not been distored by the computation provider
neither intentionally (malicious party), nor by accident (software,
hardware bugs).

More General Problem

‘ C(x),d,r
‘.T \ /R
B, B D ‘A" -
¥), d,r

* How can we ensure that C(d) was computed correctly?

* How to assure other users that C(d)=r was computed correct and
do it fast?

A

cd)=r?

Approaches

Repeat computation

B Cx). d > /|
- L _.co:r Q)

Approaches

Digital Signature =7= Trust

a Ckx),d =
D ‘ c(d) = 0
’ ‘L - sig(r) = sigR

Check(sigR) ?= True

Approaches

Redundant computation

X

& 5
T
(1 ==r2==r37 ;::::::Iiiifw

Approaches

Approaches based on PCP-theorem

A C(x) ->A(x),>d |
W ‘L (r, cert) = A(d) “

check(A, d, r, cert) = {true | false}

Blockchain Protocols Properties

Immutable
business logic
programmed
as a smart-
contact

Transparent
data and

transactions

Value Exchange
within the system

{2)

ooo |l

High Availability

Massive
Fault-Tolerance

Approaches

Smart-contract on a blockchain

C(x)
- C(d)
| r = C(d)

Smart-contracts on a public blockchain could solve
the problem, but their computing ability is too low.

Blockchain Protocol Sketch

é é ‘é (r, cert) = F(C, d)

Smart-Contract

» Check(C, d, r, cert) = True?

Basic Blockchain Protocol

Trust Model

* We do not trust Computation Providers 'per se'
(malicious actor, errors in computation, etc..)

« We do trust smart-contract, i.e. can inspect smart-
contract logic

» All participants are rational, i.e. everything they do is
motivated by an attempt to maximize their profit

» At least, 1 fair/correct motivated computation provider
available in the system

& ® @

Assumptions

* User program C(x) and initial data d is small
enough to be placed into the blockchain

* Program result C(d) is small enough to be placed
Into the blockchain

* Program (i.e. function) C(x) is terminating

Client

Computation
Request

SateComp Protocol

Protocol Participants

i

Computing Computing
Provider Auditor

Smart-Contract Blockchain
on a BlockChain Oracle

Computation Transparent reliable Trusted link
processing/audition refutation procedure with an externel
Data Source

4

Intruder

Wants to trick
the protocol for
profit

Meet SateComp

Main ideas of the protocol

* User program C(x) is transformed into iterative function
form f(x) , such that:
proj f (f (f (... f(inj(d)) ..) = C(d)
proj ((fix f) (inj d)) = C(d)
« Computation provider calculates values:
e c_.1 =H(d)
e c{i+ 1} =H(ci*f(ri))
* H(x) - secure hash-function
* Values <c_1, c 2, ..., c.k> forms a verifiable certificate

Meet SateComp

Main ideas of the protocol

Computation providers take a problem f(x), the point d , and compute
result r = f(..f(d)) together with a certificate cert

Provider publishes computed pair <r, cert> together with a
guarantee deposit. Such provider is called the solver.

Other computation providers that were late on submitting the answer
(called auditors in this case), do the check of the result and the
certificate

If error i1s found, the refutation is sent into the smart-contract. The
refutation consist of a triple: <c_{p-1}, c_p, r_ {p-1}>

Meet SateComp

Main ideas of the protocol

 Smart contract checks the refutation by performing only a
single computation step ¢.p = H(c_{p-1} * f(r_{p-1}))

* In case of refutation acceptance, the solver is punished by
paying the guarantee deposit fee. The problem is moved back
to 'published' state awaiting other solutions to be provided.

« At the end, all fair auditors and the final solver get
compensated using the total deposit (initial user deposit + all
guarantee deposits) of this computation task.

SateComp Protocol

C : Input — Output

el

f: Input' — Input'

inj 2, ‘X R, Suf(ih :th(%gd)

proj

Function in Iterative Form

Non-iterative form:

fact (0] -> fact : Nat » Nat
1;

fact [N)] when N > 0 ->
N * fact [N-1] .

lterative form:

FactFP ({0, Acc}] -> factFP : Nat * Nat = Nat * Nat
{0, Acc} ; injn) ={n, 1}

FactFP [{N, Acc}] when N > 0 -> proj({n, m}) = m
{N - 1, Acc * N} .

\forall n . fact (n) == proj((fix factFP) (inj n))

Function in Iterative Form

Non-iterative form;

] -> 1; C : Nat * Nat — Nat

:> 1;
-> C[N-1, M] + C[N-1,M-1].

Egpmgl Ac}:c%\]Ti> /{&'([:(]:,}]Acg};{T 1o fecl Cfp : list(Nat) * Nat -
- ’ + ACCj; i *
CFB[{[{O, “} | T1, Acc}) -> {T 1 + Acc}; ist(Nat) * Nat
Rt | T Acd] 2 R Ak injin, mb) = {1{n, m}1, 03
{[{N-1,M} | [{N-1,M-1} | T]], Acc}. proj({_, acc}) = acc

Related Works

truebit

https:/ltruebit.io

Evgeniy Shishkin . JSC «InfoTeCS»

: . 127287, Moscow, Stariy
Senior researcher : Petrovsko-Razumovskiy

proezd, 1/23, bid. 1

||

- = +7 (495) 737 61 92 (ext.4726)

i n f o t e c s® evgeny.shishkin@infotecs.ru

https://unboxedtype.bitbucket.io

https://unboxedtype.bitbucket.io/

