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Agenda

Static analysis and development lifecycle

Haven’t we solved the problem yet?

Design decisions and lessons learned*
Overall architecture

Supporting infrastructure
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Supporting infrastructure

Analysis organization

Analysis algorithms

Warning review

What lies ahead

* See also: 
Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, 
Scott McPeak, and Dawson Engler. A few billion lines of code later: using static analysis to find bugs in the 
real world. Commun. ACM 53, 2 (February 2010), 66-75.



Static Analysis Requirements

Wide applicability: defect detection, program 
understanding, performance, ...

Application for secure development lifecycle
CI integration, nightly builds, Q&A

Requirements that follow:Requirements that follow:
Fully automatic analysis (no need to change the code)

Scalable to millions of LOC

Fair percent of true positives (60+%)

Sufficient completeness*

Support of programming languages (C/C++/Java/C#), 
defect types (many), environments (Windows/Linux)

Extensibility with new checkers, flexibility (tailored config)

Quality tradeoff
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Haven’t we solved it yet?

A few production tools – can’t they just evolve?

Some non-trivial issues come to mind:
Difficult to compare with competitors: their licenses won’t allow

Difficult to choose the evolution directions

 memory modeling (separation logic etc.)

conventional analyses become demand-driven conventional analyses become demand-driven

 SMT solvers become more powerful and change the way 
analyzers build queries for errors detection

The goal of saving developer time is taken further

 Tightly integrate with developer’s workflow (CI)

 Prioritize analyzer’s output so that true warnings are seen first

 Suggest and make semi-automatic code fixes 
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Svace Architecture

1.

3.

2.
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Build Interception

Detect process launch
LD_PRELOAD to dynamically linked executables

Debugging API (ptrace, WinAPI)

Wrappers (e.g. MS-DOS machine within Windows)

Java: agent injection for compilation APIs interception

C#: msbuild DLL injection (similar to Java)

Parse cmdline/environment
Trace “interesting” launches

Decide on action (usually – run own compiler)

Transform cmdline (options/envvars) for our compiler, 
not loosing significant options, include paths, ...

Launch our compiler for generating IR
(or other needed tools) 6



Constructing An Analyzer Compiler

Harsh requirements
Need to be as failproof as possible

Need to understand C/C++ dialects of dozens of 
desktop/embedded compilers

Need to understand modern language standards

Has to base on production open source 
(C/C++  GCC/LLVM) or buy EDG(C/C++  GCC/LLVM) or buy EDG
Add some “fuzzy parsing” mechanism (ie not stop on error,

but recover as much as possible)

Fixup for dialects (or “morph” user source to get rid of them)

Inject additional data if needed by the analyzer

>1000 patches wrt vanilla Clang

Java/C# is no problem (one compiler)
Though Google invented (and deprecated) Jack compiler... 7



Analysis Engine

Extensibility
Need to support many warning types / checkers

Ways to reuse code and calculated data for checkers 
(effectively the data that is always required becomes “core”)

Multiple language support
Lower level common IR

Ensure that analysis assumptions are honored when making IREnsure that analysis assumptions are honored when making IR

Call graph reconstruction
C/C++: requires gathering linkage information

C++/Java/C#: requires (some) devirtualization

Parallel analysis
Analyze in parallel independent call graph parts 

Take into account function locality w.r.t. modules

Speed / memory consumption tradeoff
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Analysis Engine – II

Incremental analysis
May be used for CI integration and for running on developer’s PC

Needs changes in all components (“merging” old and new data)

Need to understand whether to draw a line in analyzing the 
unchanged code with changes in context

Determinism
Same/slightly changed results for same/slightly changed source 

Varying input data (due to build issues)

Analysis results grouping

Dependence on the iteration order over input data 
(fixup the order or change the algorithm)

Function analysis timeouts (avoid “real” timeouts if possible)

Statistical checkers
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Analysis Algorithms

Memory model / aliasing
Field sensitivity, limited number of dereferences

Alias analysis, escaped memory analysis, strong/weak updates

Sound / unsound
Most analysis is unsound (parameter aliases, loops, 

limitations on summary / derefs)

But need fully sound part (unreachable code, functions exiting 
program)

Tracking values’ properties
Reason about properties of values, not of memory cells

Should be careful when there are multiple ways to reinterpret 
the value
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Analysis Algorithms – II

Parameterized summaries
Scalability requires limiting the number of passes over a function

Context sensitivity means varying analysis behavior 
for different calling contexts

Using function summaries that parameterize analysis results
on external memory means visiting every function only once

Careful to put to the summary only the data describing Careful to put to the summary only the data describing 
“escaped” memory and to limit its size

Checkers should decide what information is important to save

“Symbolic” external values
When treating unknown values’ properties conservatively, 

intraprocedural analysis doesn’t yield anything useful

Try saving any merges/computations with such values and 
resolve them upfront in the call graph with concrete values
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Error Definitions

Beliefs / inconsistencies
Known way to detect errors: find inconsistencies in the 

assumptions the code does about some dataflow facts

Find a control flow “segment” where:
- either there’s always an error if we go there, or
- the “segment” is unreachable / unfeasible
Both ways it makes sense to warn

Rely on programmers not writing unneeded code

A segment may be a control flow edge or 
an execution path (for path sensitive analysis)

Statistical checkers also find “inconsistencies” 
(mostly done this way  this way is “right”)

Language specific definitions are possible (C++, Java) 12



Path sensitivity via symbolic execution

Core engine computes a path predicate

Symbolic states are tracked and merged

Checkers are free to attach conditions to 
the attributes they are tracking
We are still reasoning about values, not memory

Just tracking values’ changes (aka “symbolic Just tracking values’ changes (aka “symbolic 
state”) is often not enough
Taking a specific path is useful information (comparisons)

Condition simplification
It is useful to apply a handful of trivial simplifications before 

passing a query to an SMT solver
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Warning Review

Convenient review interface
Web-based, but now better be integrated into CI or dev.env

“Dashboard” (bird’s eye view)

Runs comparison
Never see anything once reviewed as a false positive

Need to support slightly changed code and repo branchesNeed to support slightly changed code and repo branches

Lots of data to store (except analysis results)
Source code to show it

Tokens/relations to do syntax coloring/navigation

Even more for e.g. incremental analysis

Migration without loosing review
Match warnings between releases to avoid spurious new stuff

Avoid too much churn (cf. mentioned Coverity paper) 14



What Lies Ahead – Analyzer

More of aliasing

Better loop handling

C++/Java collections
No chance to infer their semantics through implementation, 

need to make their primitive operations “first class” in the IR

Serving to different clientsServing to different clients
Basic use case assumes warnings will be reviewed by humans

Need to configure “verboseness”

Need to adapt to the dynamic analysis toolchain use case

Analysis API
Some checkers (e.g. simple source-sink ones) can be done by 

customers, and they wish to do so

External API will help but needs resources for support 15



What Lies Ahead – Around Analyzer

Being input to further analyses

Prioritization
Sort out warnings to make true ones stand out

Code fixes
Suggest fixes to certain warnings and (optionally) apply them

Improving review experience (ML)Improving review experience (ML)
Direct more attention to the changes that are potentially risky 

Code base wide refactorings
Making changes guided by static analysis results for the whole 

code base (think hundreds of git repos)
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Success is a team effort


