|) RAS

Recovery of high-level
intermediate representations
of algorithms from binary code

Alexander Borisovich Bugeryal'l, lvan Ivanovich Kulagin'?, Vartan Andronikovich Padaryan!2 3],
Mikhail Aleksandrovich Solovev(2 3l Andrei Yur'evich Tikhonov!?

1] Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
2] Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
3] Lomonosov Moscow State University, Moscow, Russia

Email: shurabug@yandex.ru, {i.kulagin, vartan, icee, fireboo}@ispras.ru

[VANNIKOV MEMORIAL WORKSHOP, VELIKIY NOVGOROD, SEPTEMBER 13-14, 2019

FLAWS IN APPLICATION LOGIC

 Flaws in application logic are hard to find

 This requires developing a program behavior model before model violations
can be detected

» One of the approaches that do not require specifying a model
is dynamic taint analysis

- Its usage is hindered because false positives and negatives

- The actual data transformations are typically not considered
 To solve these problems, a human analyst is involved

« Analyst actions are automated to a certain degree by various tools
(Trawl, Ghidra, Binary Analysis Platform — BAP, etc.)

FLAWS IN APPLICATION LOGIC

» The order of analyst actions is based on expert knowledge,
and often involves a large amount of manual work

» The hard degree and the result quality of manual analysis
depend on representation of the algorithm

« Existed intermediate representations (IR) are unsuitable

« Compilers IR
(GENERIC, GIMPLE, RTL in GCC; LLVM IR; Program dependence graph)

* IR of modeling machine instructions and binary analysis
(Pivot/Pivot2!'], B2R2/7, REIL!, MAIL“, BAP (BIL)"%, BitBlaze!®, ESIL), etc.)

[1] = M.A. Solovev, M.G. Bakulin, M.S. Gorbachev, D.V. Manushin, V.A. Padaryan, S.S. Panasenko. Next generation intermediate representations for binary code analysis.

[2] = Jung, Minkyu and Kim, Soomin and Han, HyungSeok and Choi, Jaeseung and Kil Cha, Sang. B2R2: Building an Efficient Front-End for Binary Analysis.

[3] = T. Dullien and S. Porst. REIL: A platform-independent intermediate representation of disassembled code for static code analysis.

[4] = S. Alam, R. N. Horspool and I. Traore. MAIL: Malware Analysis Intermediate Language: A Step Towards Automating and Optimizing Malware Detection.

[5] = D. Brumley, I. Jager, T. Avgerinos and E. J. Schwartz. BAP: A Binary Analysis Platform.

[6] = D. Song, D. Brumley, H. Yin, J. Caballero, |. Jager, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam and P. Saxena. BitBlaze: A New Approach to Computer Security via Binary Analysis.

[7] = ESIL: Radare2 book. URL: https://radare.gitbooks.io/radare2book/content/disassembling/esil.html. 3

HIGH-LEVEL ALGORITHM REPRESENTATION

 Currently there is a lack of tools that could build from binary code
hierarchical flowchart-based algorithm representation
that is suitable for manual analysis

* |t is needed to propose:

* A high-level hierarchical representation of an algorithm based on flowcharts

* Algorithm of whole-system binary code analysis that builds such a representation
» The proposed solution should not rely on any kind of code markup

» The proposed representation should be suitable for manual analysis
and for implementing automatic data flow analysis algorithm in context of finding
undocumented software features

HIERARCHICAL

HIGH-LEVEL ALGORITHM REPRESENTATION

 High-level hierarchical flowchart-based representation of an

algorithm is based on hypergraph blo bll
* Representation has two kinds of nodes
. . . fo = Po P1
1. Points (p;) — represent an instruction So fi |
executed at a certain trace step P2
2. Buffers (b;) — represent a region of an abstract memory I
model (which can be an actual contiguous memory b, b
address range, a register or a part thereof) \/
at a certain trace step -
3
« Edges describe data dependencies s1 f2 !
P4
 Point nodes can be grouped into subsets — fragments (f;) l

« Fragment nodes can be grouped into superblocks (s;) by

HIERARCHICAL

HIGH-LEVEL ALGORITHM REPRESENTATION

 Logically connected buffer nodes can be grouped into subsets

called superbuffers blo bll
3. Fragment nodes (f;) — correspond to code fragments f Do p
in the trace (linear step sequences 0 !
S0 f1 !
such that there are no call Dy
or return instructions within them) I
4. Superblock nodes (s;) — correspond to instances of function b, b;
calls and therefore can only contain fragments \/
that belong to a single function instance -
3
5. Superbuffer nodes (B;) — logically connected buffer nodes si Jz pl
4
« Superbuffers and buffers correspond to data structures in the |
program and define interoperation interfaces between fragments b,

and superblocks

CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

» The basis of constructing the high-level representation is the backward slicing algorithm
used to track data flow in reverse step order

« Representation of an algorithm is built only from points (trace steps)
that contribute to forming the result buffer

* Input of the construction algorithm:

- Start buffer b: < a,l > is a result buffer of the algorithm being analyzed
(a — begin address of buffer; [— length of buffer)

« Trace t where execution of the analyzed algorithm had been recorded
* Functions call information C

CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

» The construction algorithm performs two main steps:

1) discovery of points in trace that belong to the algorithm forming the start buffer
and their grouping into fragments (createPointsAndFragments)

2) grouping fragments into superblocks (createSuperblocks)

CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

» The construction algorithm performs two main steps:

1) discovery of points in trace that belong to the algorithm forming the start buffer
and their grouping into fragments (createPointsAndFragments)

2) grouping fragments into superblocks (createSuperblocks)

b<al>

fo Po

t —trace > - createPointsAndFragments -

C — call info) i m

CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

» The construction algorithm performs two main steps:

1) discovery of points in trace that belong to the algorithm forming the start buffer
and their grouping into fragments (createPointsAndFragments)

2) grouping fragments into superblocks (createSuperblocks)

by
\ |
So fO Po
fo Po
> - createSuperblocks - b,
fi P1
) S]_ fl pl

b<al>
10

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

AES encryption program

key = GenerateKey()
text = ReadText()
cipher = aes(key, text)

Execution trace

Po ® [[] [® Dg © [[[® Dig ©® ([[([] [P27
P1 P2 P3 ® © ® Dp; Ppg PioP11P12 ®© ® ©® DPieP17 P19 P20P21 ® ©® ©® P25P2e
P4+ Ps DPe N P13 P14 P15 |} P22 P23 P24
GenerateKey() ReadText() aes()

Execution order of instructions in trace

po - call GenerateKey()
pg - call ReadText()

p1g - call aes() -

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

« The point set corresponds to the backward trace slice for cipher buffer

12

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

1. Grouping into fragments (createPointsAndFragments)

13

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

1. Grouping into fragments (createPointsAndFragments)

fo =1p1} f1 = s ps}h f2 = {7} 53 = P10, P11} fo = {013},
fs = P16} fo = {10} f7 = {022,023} f5 = P25}

fo

f

f2

fe

fe

p1

p7

P19

f3

fa

fs

f7

P2s

P1o
P11

P13

P16

P22
P23

14

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

1. Grouping into fragments (createPointsAndFragments)

fo =1p1} f1 = s ps}h f2 = {7} 53 = P10, P11} fo = {013},
fs = P16} fo = {10} f7 = {022,023} f5 = P25}

2. Grouping fragments into superblocks
(createSuperblocks)

fo

f

f2

fe

fe

p1

p7

P19

P2s

f3

fa

fs

f7

P1o
P11

P13

P16

P22
P23

15

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

1. Grouping into fragments (createPointsAndFragments) bf bf
fo =1p1}, f1 = s, s}, fo = P73, f3 = P10, P11} fa = (P13}, e Ifl A ——
fs = P16} fo = {10} 7 = {22,023} fs = {p2s} bll p;“

S0s S1, b
GenerateKey() f [ReadText() 15
Ps fal P13
2. Grouping fragments into superblocks Y N
(createSuperblocks) p ! y |
2 b7 5 Pie
so = o fu f2b 51 = s far fs1 52 = {fe) f7, fo} bl bl
3 7
fe P19 £ D22
P23
S, l
aes() bg by
| |
fs b2s
|

cipher i

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

The hierarchical organization of the representation bf bf
is suitable for the algorithm research in manual mode foo m P10
: : : | f3

(because excess details can be elided through folding b, Pus
fragments and/or superblocks) 5o, | s1, b,
GenerateKey() f [ReadText() |
Ps fa P13

| |

bz b6

! |
/2 b7 fs P16

} |

bs b7
fe P19 £ P22
P23

S, l

aes() bg be

fs P2s

cipher .

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

The hierarchical organization of the representation
is suitable for the algorithm research in manual mode
(because excess details can be elided through folding

fragments and/or superblocks) So»
GenerateKey()

FOld fragments fOr fl) f2r f3r f4i f51 f6' f7' f8

aes()

51
ReadText()

fe

cipher

18

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

The hierarchical organization of the representation
is suitable for the algorithm research in manual mode

(because excess details can be elided through folding bf bf
fragments and/or superblocks)

So, S1,

Gener'aeceKey() ReadText()

FOld fragments fO; fl) fZ; f3; f4-r f5) f67 f7' f8 l l
Fold superblocks s,, sq, s, b b,

l |

S2)
aes()

cipher

19

EXAMPLE OF CONSTRUCTION

OF HIGH-LEVEL REPRESENTATION

The hierarchical organization of the representation

is suitable for the algorithm research in manual mode
(because excess details can be elided through folding
fragments and/or superblocks)

FOld fragments fOr fll er f3r f4r f5' f6' f7' f8
Fold superblocks s,, sq, s,

Fold entire diagram {s,, s;, s,} = s3

cipher

20

CONCLUSIONS AND FUTURE WORKS

» The hierarchical high-level representation of a program’s algorithm has been proposed
» The representation is based on a hypergraph and permits analysis in manual and automatic settings

« Algorithm of whole-system binary code analysis that builds such a representation has been proposed

e Future works:

« Improving the quality of the representation by identifying high-level language constructs
(such as conditional and loop statements, etc.)
and recovering structural and type information for program variables

« Development of automatic methods of analysis of an algorithm’s properties
based on its high-level representation

21

|) RAS

Thank you for your attention!

Alexander Borisovich Bugeryal'], Ivan Ivanovich Kulagin!?, Vartan Andronikovich Padaryan!? 3],
Mikhail Aleksandrovich Solovev!2 3l Andrei Yur'evich Tikhonov!?

1] Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
2] Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
3] Lomonosov Moscow State University, Moscow, Russia

Email: shurabug@yandex.ru, {i.kulagin, vartan, icee, fireboo}@ispras.ru

