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Relevance

Clustering and labelling clusters are useful tools to ease the search of
scientific articles.

Our aim was develop a method for labelling clusters in Scinoon system.

Google Akanemns  imags ciassifcation

Figure 1: Common search

Figure 2: Manually clustered articles
(Google Scholar)

(Scinoon)
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Our domain

Our domain is collections of scientific articles that are:
@ quiet specific;
@ not large-scale (up to 100);
@ represented with their abstracts and meta-data.
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Employ hierarchical clustering

Scientific domain is hierarchical, so we decided to label hierarchical

clustering. Hierarchical clustering lies in building a tree in which a parent

cluster consists of its child clusters.

Figure 3: Manually hierarchically clustered articles (Scinoon)
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Requirements for clustering descriptions

The basic requirements for clustering descriptions are following (Zhang et
al (2009)):

@ Conciseness

e Comprehensibility

@ Accuracy

@ Distinctiveness
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Existed solutions: overview

’ Sources of labels ‘ Approaches ‘ Disadvantages
External resources Hyperonyms
(WordNet)
Articles’ titles
(Wikipedia)

Category titles
(Open Directory
Project)
Cluster's documents | TF-IDF, TF-ICF
like
Reference-based
(x>-test, JSD
etc)

Combined
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Our solution: build on ComboBasic

A plain term extraction algorithm (Astrakhantsev, 2016)

ComboBasic(t) = |t| -log f(t) + a- e+ 3 e

Allows to customize the level specificity of terms explicitly with « and .

|t] is the length of t in words

f(t) is the frequency of t

et is count of longer term candidates (superterms)
e, is count of shorter term candidates (subterms)

“In this paper, we propose a new method HCBasic for labelling
hierarchical clusters.”

@ “hierarchical clusters” is more specific than “clusters”

e “labelling” is more general than “labelling hierarchical clusters”
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HCBasic: adjusting for hierarchy

The weighting scheme

HCBasic(t) = |t| - log f(t) + & - e; + [ - €} + 7(t) + 7 - 7(t)

e &a=a—0.1-pos
o 3=p£+0.1-pos
depth(cluster)
@ pos = .
depth(cluster) + heigth(cluster)
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HCBasic: benefits from papers’ titles

The weighting scheme

HCBasic(t) = |t| - log f(t) + & - e; + 5 - ef + 7(t) + 7 - w(t)

e 7(t) is the number of articles, in whose titles term t has occurred,
normalized with the cluster size
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HCBasic: benefits from abstracts’' claims

The weighting scheme

HCBasic(t) = |t| - log f(t) + & - e+ - e + 7(t) +5-n(t) (1)

e 7(t) is the number of occurrences of a term ¢ in "claim sentences"
normalized with its total occurrences.

e ¥ =1+ pos

B depth(cluster)

~ depth(cluster) + heigth(cluster)

@ pos

@ In this paper, we propose a new method HCBasic for labelling

hierarchical clusters.

@ The main contribution of this article is the idea of customizing the
level of labels’ specificity explicitly.
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User interface of estimation system

ispasverisnon

Click on the circle to
choose the cluster.

Click on the cluster to see
its children

If this tree is too difficult
for you, click on "Next"

Next

Irina Peganova ( ISP RAS)

Locality-constrained Linear Coding for
Image Classification

The traditional SPM approach based on bag-of-
features (BoF) requires nonlinear classifiers to achiev

PDE

Authors: Wang Yang Yu Lv H

Self-taught learning: Transfer learning from
unlabeled data

ent a new machi

We prest arning framework
called” self-taught learn

for using unlabeled data
PDF

Authors: Raina Batle e Packer Ng

‘The pyramid match kernel: Discriminative
classification with sets of image features

Discriminative learning s challenging when examples
are sets of features, and the sets vary in car

PDE
Authors: Grauman Darvell

Labelling hierarchical clusters September 12, 2019

11 /24



User interface of estimation system (2)
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User interface of estimation system: labelled cluster tree

isprasworksnop Getclusters.
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User interface of estimation system: cluster block

spraswonon Getcusers

Click on the circle to
choose the cluster.

Click on the cluster to see
its children

If this tree is too difficult
for you, click on "Next"

=
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User interface of estimation system: asked articles

A user was asked to find the less redundant cluster which contains side
panel articles.

isprasworksnop Getclusters.

Locality-constrained Linear Coding for
Image Classification

The traditional SPM approach based on bag-of-
features (BoF) requires nonlinear clasifiers to achiev

PDE

Self-taught learning: Transfer learning from
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‘We present a new machine learning framework
called" self-taught learning” for using unlabeled data

PDF
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Benchmarks: PathRatio

How long had the user been searching?

We compute the ratio between the user path and the optimal path.

Locality-constrained Linear Coding for

Image Classification

User path ————
Optlmal path The traditional SPM approach based on bag-of-
features (BoF) requires nonlinear classifiers o achiev

PDE

Self-taught learning: Transfer learning from
unlabeled data

We present a new machine learning framework
called"” self-taught learning" for using unlabeled data

PDF

rs: Raina Battle Lee Packer N

The pyramid match kernel: Discriminative
classification with sets of image features

Discriminative learning is challenging when examples
are sets of features, and the sets vary in cary

PDE
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Benchmarks: “Jumps”

How accurate the labels are?
We compute the number of changing branches while expanding tree nodes.

Locality-constrained Linear Coding for
Image Classification

User path
Optimal path

The traditional SPM approach based on bag-of-
features (BoF) requires nonlinear classifiers o achiev

PDE

Authors: Wang Yang Yu Lv Huang

Self-taught learning: Transfer learning from
unlabeled data

We present a new machine learning framework
called” self-taught learning” for using unlabeled data
i

PDF
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The pyramid match kernel: Discriminative
classification with sets of image features
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Benchmarks: Attempts

How match attempts the user needs?
We compute number of user fails when choosing. If a user succeed on the

first try, it equals to 0.

User path
Optimal path

Locality-constrained Linear Coding for
Image Classification

The traditional SPM approach based on bag-o
features (BoF) requires nonlinear classifiers to achiev

PDE

Self-taught learning: Transfer learning from
unlabeled data

We present a new machine learning framework
called" self-taught learning" for using unlabeled data

PDF

The pyramid match kernel: Discriminative
classification with sets of image features

Discriminative learning is challenging when examples
are sets of features, and the sets vary in ca

PDE
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Compared algorithms

e HCBasic

e ComboBasic (Astrakhntsev, 2016)
@ hierMTWL;4 (Muhr, 2010)

e MTWL,4r (Muhr, 2010)
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Volunteers' datasets

Table 1: Datasets

Dataset Properties

number Field Sampled size
1 Graph data-bases 17
2 Web page data extraction 18
3 Social network graphs 20
4 Generating similar graphs 23
5 Cascades 29
6 Clustering 34
7 Exploratory search 56
8 Active learning 67
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Results: Total statistics

@ The significance level of
collected data were not
high enough

@ The numbers per
algorithm were very
different for different
datasets

Irina Peganova ( ISP RAS)

Table 2: Total averages of benchmarks

Labelling | Answers Benchmarks (average)
algorithm amount | PathRatio | Attempts | Jumps
hierMTWLgr 36 447 3.63 3.30
MTWL 48 3.00 4.17 3.13
ComboBasic 70 3.51 3.86 3.26
HCBasic 91 3.55 3.96 3.07
14
=3 ComboBasic &Zza MTwL hierMTWL

HCBasic

Average of attempts

Datasets

Figure 4: Average of attempts over the each

collection
Labelling hierarchical clusters
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Partial findings: How many attempts do the users need?

—— HCBasic

034 hierMTWL
o e ComboBasic
0.2 4 —-- MTWL

0 5 10 15 20 25
Number

Figure 5: Required number of attempts before a correct answer
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Partial findings: How frequently do the users take a wrong
branch?

Jumps
0.40 4 \ —— HCBasic
i hierMTWL
0.35 N AL ComboBasic
X —-- MTWL
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Figure 7: Number of jumps done by the participants before a correct answer
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Conclusion?!

1. HCBasic labelling method

@ cluster position in hierarchy explicitly sets out the level of specificity of
labels;

@ designed especially for articles’ abstracts

v

2. New evaluation strategy

@ “in vivo"'

@ checking the requirements for clustering description implicitly

N

1The reported study was partially funded by RFBR according to the research project
17-07-00978 A.

Irina Peganova ( ISP RAS) Labelling hierarchical clusters September 12, 2019 24 /24



