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Introduction

Motivation
In some fields (e.g. banking) there are need for fast
and consistent systems. Traditional solution -
mainframes. Alternative solutions - consistent
distributed systems.

Cap Theorem

• Consistency

• Availability

• Partition Tolerance
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Apache Ignite

In Memory Data Grid

Can work as a cache to traditional relational DBMS

Can be configured as either CP or AP

Can work as either key-value or SQL-like
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Apache Ignite transactions

Atomic - no transactional locks, guarantees data
atomicity and consistency for each single operation.

Transactional - ACID compliant transactions.
Highest consistency level. Supports only key-value
transactions.

Transactional Snapshot - ACID compliant
transactions. Can have write skew anomaly. Supports
both key-value and SQL transactions.
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Jepsen

Testing framework

Allows to check transaction history against
consistency models

Customizable workload through customizable workers

Workers can send requests to data storage or cause
network failures
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Consistency models

Serializable

Parallel execution of a set of transactions is
equivalent to the serial execution of single
transactions

Linearizable

The writes are instantaneous and all the reads after a
write return the value of that write or a later one

Strict serializable

Combines both serializability and linearizability
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Experiment design

Key-value transactions

Two Apache Ignite client types: client nodes and thin
client

Client nodes configuration:

• serializable isolation level

• pessimistic locks

On thin client isolation level and locks type could not
be configured
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Experiment design

Configuration variables:

• number of nodes N between 2 and 5
• number of replicas between 1 and N

• number of workers K - multiple of N

One test run:

• random set of operations
• one operation - single read or write of a single
value to a single key

• key and value are integers in range from 0 to 4.
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Results

Using client nodes:

• no violations were found

Using thin client:

• with one worker for one node no violations were
found

• with 5 nodes, 10 workers and 3 or more replicas
violations were found

8



Results. Example of a violation

Example of consistency violation
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Conclusions

Cannot achieve linearizable consistency with thin
client, most likely due to absence of isolation level
control.

Couldn’t find consistency violations using client
nodes.

As a future work Apache Ignite could be tested
against strict serializable model, Jepsen workers that
create network problems also could be included.
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