
Analysis of Consistency for In Memory Data
Grid Apache Ignite

Ivannikov Memorial Workshop

Tapekhin Andrey
a.tapekhin@ispras.ru

Velikanov Oleg
oleg.velikanov@gmail.com

Bogomolov Igor
bogomolov.ispras.ru

13.09.2019

This work is funded by the Minobrnauki Russia (grant id RFMEFI60417X0199, grant
number 14.604.21.0199)

a.tapekhin@ispras.ru
oleg.velikanov@gmail.com
bogomolov.ispras.ru


Introduction

Motivation
In some fields (e.g. banking) there are need for fast
and consistent systems. Traditional solution -
mainframes. Alternative solutions - consistent
distributed systems.

Cap Theorem

• Consistency

• Availability

• Partition Tolerance

1



Apache Ignite

In Memory Data Grid

Can work as a cache to traditional relational DBMS

Can be configured as either CP or AP

Can work as either key-value or SQL-like

2



Apache Ignite transactions

Atomic - no transactional locks, guarantees data
atomicity and consistency for each single operation.

Transactional - ACID compliant transactions.
Highest consistency level. Supports only key-value
transactions.

Transactional Snapshot - ACID compliant
transactions. Can have write skew anomaly. Supports
both key-value and SQL transactions.

3



Jepsen

Testing framework

Allows to check transaction history against
consistency models

Customizable workload through customizable workers

Workers can send requests to data storage or cause
network failures

4



Consistency models

Serializable

Parallel execution of a set of transactions is
equivalent to the serial execution of single
transactions

Linearizable

The writes are instantaneous and all the reads after a
write return the value of that write or a later one

Strict serializable

Combines both serializability and linearizability
5



Experiment design

Key-value transactions

Two Apache Ignite client types: client nodes and thin
client

Client nodes configuration:

• serializable isolation level

• pessimistic locks

On thin client isolation level and locks type could not
be configured

6



Experiment design

Configuration variables:

• number of nodes N between 2 and 5
• number of replicas between 1 and N

• number of workers K - multiple of N

One test run:

• random set of operations
• one operation - single read or write of a single
value to a single key

• key and value are integers in range from 0 to 4.
7



Results

Using client nodes:

• no violations were found

Using thin client:

• with one worker for one node no violations were
found

• with 5 nodes, 10 workers and 3 or more replicas
violations were found

8



Results. Example of a violation

Example of consistency violation

9



Conclusions

Cannot achieve linearizable consistency with thin
client, most likely due to absence of isolation level
control.

Couldn’t find consistency violations using client
nodes.

As a future work Apache Ignite could be tested
against strict serializable model, Jepsen workers that
create network problems also could be included.

10


	Introduction
	Apache Ignite
	Jepsen
	Consistency models
	Experiment design
	Results
	Conclusions

