Разработка решателя iceFoam для моделирования процесса обледенения

Константин Кошелев, Валерия Мельникова, <u>Сергей Стрижак</u> ИСП РАН, г. Москва

Международная конференция "Иванниковские чтения", г. Орел. 25-26.09.2020

Содержание

- Актуальность проблемы
- Архитектура и разработка решателя iceFoam
- Математическая модель
- Тестовые примеры
- Первые результаты
- Заключение

Актуальность проблемы: безопасность полетов самолета и оценка АДХ

Пример образования наледи на крыле

An example of rime-ice accretion

An example of glaze-ice accretion

Использование противообледенительной жидкости

Постановка задачи обледенения для самолетов ШФДМС, Байкал (пропеллер, шасси, хвостовое колесо), L-610 (2 пропеллера)

Моноплан с высокорасположенным подкосным крылом. 9 пасс. на 4500 км. Полеты на Севере. Заказчик - «Полярные авиалинии» из Якутии. Высота полета – до 4 км.

2019: Концепт регионального самолета с гибридной силовой установкой. ЦАГИ.

Самолет L-610. 40 пасс. на 2420 км.

Вопрос-имеется ли ПОС?

Обледенение линий электропередач

(S. Fikke et al. COST 727: Atmospheric Icing on Structures Measurements and data collection on icing: State of the Art. 2006. Publication of MeteoSwiss, 75, 110 pp.)

Central mountain range

Presence of air gaps and arc development

Wind tunnel test section with a conductor covered with water layer.

Различные формы и типы льда

Приложения C, O, P, D – авиационные правила АП 25 / CS 25

- 1) Лед с элементами шероховатости
- Размеры шероховатости льда больше чем размеры пограничного слоя
- Основные эффекты определяются плотностью, высотой, положением поверхности
- 2) Horn ice (лед с формой рога рогообразный)
- Характеризуется большими отрывными зонами
- Влияние: Высота, Угол, расположение
- 3) Streamwise ice (лед, совпадающий с направлением по потоку)
- Формы льда совпадают с определяющими гранями
- Поверхностная шероховатость может иметь большое значение на АДХ
- 4) Spanwise-ridge ice (ледовый гребень барьерный)
- Obstacle in the flow since "airfoil" boundary layer has time to develop
- Расположение и высота являются ключевыми параметрами, но геометрия гребня также важна

y see

Алексеенко С.В., Приходько А.А. Численное моделирование обледенения цилиндра и профиля. Обзор моделей и результаты расчетов // Ученые записки ЦАГИ. 2013. том XLIV. № 6. с. 25-57.

Основные определяющие параметры в задачах моделирования обледенения

- Объемная доля воды α,
- Температура капли Т∞,
- Скорость капли V∞,
- Время образования льда icing time τ ,
- Эффективность поверхности аккумулировать капли β,
- Средний диаметр капли median volume diameter (MVD) δ ,
- Водосодержание liquid-water content (LWC),
- Угол атаки angle of attack (AOA),
- Хорда крыла с,
- Число Рейнольдса Re,
- Число Маха М∞;
- Число Фруда Fr,
- Число Вебера We.

Разработка эйлер-лагранжев решателя iceFoam на базе OpenFOAM v1912 в ИСП РАН.

Коммерческие коды: Ansys Fensap-ICE, Star-CCM+, Aircraft Icing Design, Tesis Flowvision. Частные коды: NASA Lewice, ONERA IGLOO3D, NSCODE-ICE, CANICE, PoliMICE, ФГУП «ЦАГИ» ICESIM, Логос

Приложение С (жидкие капли с диаметром (MVD) до 40 мкм)

 $C_D = (24/\text{Re}_d)(1 + 0.15 \text{ Re}_d^{0.687}) \text{ for } \text{Re}_d \le 1300$ $C_D = 0.4 \text{ for } \text{Re}_d > 1300$ (3)

Приложение С

Математическая модель. Решатель iceFoam.

Эйлеров континуальный подход

• Уравнение сохранения <u>массы</u> *р смеси*:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{U}\rho) = \dot{\rho_t}$$

Уравнение баланса <u>импульса</u> смеси:

 $\frac{\partial \rho \vec{U}}{\partial t} + \nabla \cdot (\vec{U}\rho \vec{U}) + \sum_{i} \rho_{i}^{0} \vec{W}_{i} \vec{W}_{i} = \dot{\rho}_{v} \vec{U}_{v} + \nabla \cdot \hat{\sigma} + \rho \vec{g}$

• Уравнение баланса энергии смеси:

$$\frac{\partial \rho e}{\partial t} + \nabla \cdot (\vec{U}\rho e) + \sum_{i} \nabla \cdot \vec{W}_{i}\rho_{i}^{0}e_{i} = -\nabla \cdot (\hat{\sigma} \cdot \vec{U}) - \nabla \cdot \vec{q} + \dot{\rho}_{v}e_{v}$$

 \vec{U} - среднемассовая скорость $\overrightarrow{W_i}$ - относительная скорость компонент $\hat{\sigma}$ - тензор вязких напряжений \vec{q} - вектор теплового потока

Уравнение баланса массы одного компонента смеси ρΥν:

$$\frac{\partial \rho Y_{v}}{\partial t} + \nabla \cdot \left(\vec{U} \rho Y_{v} \right) + \nabla \cdot \overrightarrow{W_{v}} \rho_{v}^{0} = \dot{\rho_{v}} ,$$

• Уравнение баланса <u>массы второго компонента смеси *рYa*:</u>

$$\frac{\partial \rho Y_a}{\partial t} + \nabla \cdot (\vec{U} \rho Y_a) + \nabla \cdot \overrightarrow{W_a} \rho_a^0 = 0$$

• Замыкающее соотношение для массовых долей смеси:

Ya + Yg + Yv = 1

Дискретный Лагранжев подход

• Уравнение движения:

$$\frac{d\vec{x}_p}{dt} = \vec{U}_p$$

• Уравнение баланса сил:

$$m_{p}\frac{d\vec{U}_{p}}{dt} = \sum \vec{F}_{i} = \vec{F}_{D} + \vec{F}_{G} = \frac{3}{4}\frac{m_{p}\mu C_{D}Re_{p}}{\rho_{p}D_{p}^{2}}(\vec{U} - \vec{U}_{p}) + m_{p}\vec{g}(1 - \frac{\rho}{\rho_{p}})$$

• Уравнение баланса массы капли:

$$\frac{dm_p}{dt} = \dot{m}_p$$

• Уравнение баланса энергии капли:

$$m_p \frac{dh_p}{dt} = q_T S_p - \dot{m}_p L$$

Облако

Модели взаимодействия газового потока и капель:

- модель передачи тепла Ранца-Маршалла
- модель испарения Сполдинга
- модель разрыва капли Taylor Analogy Breakup (TAB)

Результирующая модель: URANS + k-omega SST (SA) модель турбулентности

Модель тонкой поверхностной пленки

две модели: kinematicSingleLayer и thermoSingleLayer

(2-ая аналогична 1-ой, только учитывает термодинамические эффекты)

Уравнение неразрывности:

$$\frac{\partial \rho \delta}{\partial t} + \nabla \cdot \left(\rho \delta \vec{U} \right) = S_{imp} + S_{splash} + S_{evap} + S_{sep}$$

Уравнение импульса:

$$\frac{\partial \rho \delta \vec{U}}{\partial t} + \nabla \cdot \left(\rho \delta \vec{U} \vec{U} \right) = -\delta \nabla p + S_{\rho \delta U}$$

Уравнение толщины пленки δ :

$$\frac{\partial(\rho\delta^{k+1})}{\partial t} + \rho\nabla\cdot\left(\left[\frac{\mathbf{H}[\mathbf{U}]}{\mathbf{A}_{\mathbf{P}}} - \frac{\delta^{k^{2}}}{A_{P}}\nabla P_{p} - \frac{\delta^{k}}{\mathbf{A}_{P}}\nabla P_{u} + \frac{\delta^{k}}{\mathbf{A}_{P}}\rho g_{t}\right]\delta^{k+1}\right) - \nabla\cdot\left(\frac{\delta^{k}\delta^{k}P_{p}}{A_{P}}\nabla\delta^{k+1}\right) = S_{\delta}$$

Simp - масса, добавленная в пленочный слой из-за столкновения частиц,

S_{splash} - масса, покидающая пленочный слой из-за разбрызгивания частиц,

 $S_{\mbox{\tiny evap}}$ - испарившаяся масса,

S_{sep} - изменение массы за счет потенциального разделения пленочного слоя

Таблица. Возможные подмодели

Модель	Название	Возможные варианты	Описание		
Tophuluoguog no popi	thormoModel	constant	Постоянные термодинамические характеристики		
Термическая модель	thermolylodel	singleComponent	Термодинамические характеристики вычисляются		
Силы	forces	surfaceShear	Сила трения по поверхности		
		thermocapillary	Термокапилярная сила (Марангони)		
		contactAngle	Сила краевого угла смачивания		
Модели впрыска	injectionModels	curvatureSeparation	Разрыв пленки из-за кривизны стенки		
		drippingInjection	Ввод капель вследствие капания		
Модель изменения фазы	phaseChangeModel	none	Не учитывается		
		standardPhaseChange	Модель испарения, включая кипение		

Общая концепция и блок-схема решателя iceFoam

Модель Shallow Water Icing Model-SWIM

Уравнение неразрывности:

$$\frac{\partial \rho_p \delta}{\partial t} + div \left(\rho_p \delta \vec{U} \right) = S_{imp} + S_{evap} - S_{ice}$$

61

$$u(x, y) = f(\tau_{\text{wall}}, y)$$

$$u(x, y) = (y/\mu_w)\tau_{\text{wall}}(x)$$

$$u(x, y) = (y/\mu_w)\tau_{\text{wall}}(x)$$

$$u(x, y) = (y/\mu_w)\tau_{\text{wall}}(x)$$

Уравнение движения:

Уравнение энергии:

$$\begin{aligned} \frac{\partial \rho_p \delta h}{\partial t} + \nabla \cdot \left(\rho_p \delta \vec{U} h \right) &= S_{imp} \frac{U_{imp}^2}{2} + S_{evap} L_{evap} + Q_{rad} + Q_c - Q_{wall} + \\ + S_{imp} C_w (T_{imp} - T) - S_{ice} C_{ice} (T - T_{ref}) + S_{ice} L_f \end{aligned}$$

Толщина льда
$$h_i$$

 $\rho_i \frac{\partial \delta_i}{\partial t} = S_{ice}$
Система уравнений (1-4) имеет 5 неизвестных $\delta, \vec{U}, T, S_{ice}, \delta_i$
Bourgault Y., Beaugendre H., Habashi W. Development of a shallow-water icing model in FENSAP-ICE // Journal of Aircraft.
2000. Vol. 37, No. 4, P. 640–646.

SWIM модель

- 1-ый сценарий. Полагаем, что льда нет.δ_i = 0
 Тогда можно рассчитать толщину и температуру пленки воды, при которых нет образования льда.
- 2-ой сценарий. Полагаем, что температура пленки равна температуре замерзания. *T* = *T_{ref}* Тогда можно рассчитать толщину пленки воды и толщину льда.
- З-ий сценарий. Полагаем, что пленки воды нет.δ = 0
 Тогда можно рассчитать температуру пленки воды (которой нет!) и толщину льда.

Рассмотрим пока только 2-ой сценарий.

Тогда из (3) в предположении $T = T_{ref}$

и энтальпия есть функция только температуры $H_f = H(T_{ref})$ можно получить формулу для расчета

Расширенная 1D модель Messinger (Messinger, B. "Equilibrium temperature of an unheated icing surface as a function of airspeed",1953). Стоки и источники тепла.

Myers, T. and Charpin, J. (2004), "A mathematical model for atmospheric ice accretion and water flow on a cold surface", International Journal of Heat and Mass Transfer, vol. 47, pp. 5483–5500.

Необходимые внешние параметры

1. βWG – плотность потока массы [кг/(м²с)]

- 1. β коэффициент улавливания (безразмерный)
- 2. W скорость набегающего потока [м/с]
- 3. G содержание воды в воздухе [кг/м³]
- 2. Т_а температура окружающего воздуха
- 3. Р_а окружающее давление
- 4. А вектор напряжений

 $Q_d = \beta WG(T_w - T_a) -$ охлаждение каплями

 $Q_k = (\beta WG)W^2/2$ – кинетическая энергия капель

 $Q_a = r H_{aw} W^2 / (2c_a)$ — аэродинамический нагрев

Extended Messinger Model

$$\frac{\partial \theta}{\partial z} = q_0 + q_1 \theta$$
, при $z = b + h_z$
Температура
воды:
 $\vartheta(z,t)$
 $T(z,t) -$
Температура
гладкого льда
Нижняя граница:
 $T(z = 0,t) = T_s$

<u>Этап I</u>. Образование рыхлого льда

• Процесс квазистационарный:

$$T = T_s + \frac{q_{0r} + q_{1r}T_s}{1 - q_{1r}b}z$$

 Процесс происходит до момента времени *t_w* при этом образуется лёд толщиной *B_w*

$$b_w = \frac{T_f - T_s}{q_{0r} + q_{1r}T_f} = \frac{\rho_A}{\rho_i}\beta W t_w$$

<u>Этап II</u>. Образование гладкого льда и воды

 Весь рыхлый лёд превращается в гладкий

Процесс квазистационарный:
$$T = T_s + (T_f - T_s) \frac{z}{b},$$
$$\theta = T_f + \frac{q_0 + q_1 T_f}{1 - q_1 h} (z - b)$$

• <u>Условие Стефана</u>: $\rho_i \frac{\partial b}{\partial t} = k_i \frac{T_f - T_s}{b} - k_w \frac{q_0 + q_1 T_f}{1 - q_1 h}$

Задача нарастания льда в двумерном случае

Разработан решатель в OpenFOAM для моделирования процессов обледенения в рамках модели Extended Messinger.

Проведена апробация на двумерной задаче.

Рассматривается нарастание льда на наклонной поверхности (угол наклона $\alpha = 20^{\circ}$, внешняя сила направлена вдоль оси *x*).

 $\beta = 0.5 \exp(-460 x^2), W = 10$ m/c

Расчетное время: t = 60 с

Вычисление смещения узлов сетки на границе лёд-газ при обтекании цилиндра (толщина пленки воды между газом и льдом полагается пренебрежимо малой)

d – смещение, $\delta_{ice}{}^{n}$ – толщина льда в момент времени n, $\delta_{ice}{}^{n+1}$ – толщина льда в момент времени n+1, P^{n} – координаты сдвигаемого узла сетки в момент времени n, R_{c} – радиус цилиндра

$$|\boldsymbol{d}| = \delta_{ice}^{n+1} - \delta_{ice}^n \qquad \boldsymbol{d} = \boldsymbol{P}^n \left(\frac{\delta_{ice}^{n+1} + R_c}{|\boldsymbol{P}^n|} - 1 \right)$$

Алгебраический метод перестроение границы (метод биссектрис)

(1)

1. The ice thickness for a node (h_{node}) is computed by averaging the thickness from the 2 neighbouring cells $h_{node} = \frac{h_i + \bar{h}_{i+1}}{2}$

2. The nodes are moved along the bisectors (\vec{b})

$$\vec{x}_{new} = \vec{x}_{old} + h_{node}\vec{b}$$
 (2)

1. The ice thickness for each sub-layer (noted h_i^0) and at cell *i* is computed as:

$$u_i^0 = \frac{h_i}{N_{sub}}.$$
(3)

where N_{sub} is the total number of sub-iteration and h_i is the overall ice thickness for cell *i*.

2. For each sub-layer, a correction is applied to account for the change in cell length (ds^n) .

$$h_i^n = \frac{h_i^0 ds_i^0}{ds_i^n} \tag{4}$$

where ds_i^0 denotes the initial cell length.

- 3. The nodes are moved using the usual node displacement method, following the direction of the initial bisectors, see equations (1) and (2).
- 4. The new curvilinear distance ds_i^{n+1} is evaluated.
- 5. Step 2 to 4 are repeated until the desired number of sub-layers (N_{sub}) is reached.

Figure 2: Algebraic ice growth on a convex surface: (a) direct (b) sub-iteration

Как переместить узел сетки на границе по биссектрисе угла между гранями

Для каждого узла границы (patch) надо:

- 1. Найти абсолютное значение изменения границы льда в этой точке $\Delta \delta_{ice}$. (Полагаем, что эта задача решена). Остальные пункты надо выполнять только в случае $\Delta \delta_{ice} \neq 0$.
- 2. Найти все грани (faces) границы, в которых содержится данный узел. (mesh().pointFaces())
- 3. Для каждой такой грани найти вектор нормали N_i . (patch().nf()) 4. Вычислить осредненный вектор 5. Нормировать его $I_p = \frac{N_p}{|N_p|}$ $N_p = \sum_i \frac{N_i}{|N_i|}$ 6. Вычислить смещение узла $d_p = \Delta \delta_{ice} I_p$

- 7. При необходимости вычислить новые координаты узла $P_p += d_p$

Можно сначала перебрать все грани границы и для каждого узла грани прибавить значение нормального вектора. Вторым проходом по узлам границы окончательно вычислить их смещение или новые координаты.

Bourgault-Côté S., Hasanzadeh K., Lavoie P., Laurendeau E. Multi-Layer Icing Methodologies for Conservative Ice Growth. 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS). DOI: 10.13009/EUCASS2017-258. 15 p.

Иерархия классов пленки для моделирования процесса обледенения

Разработка специальной библиотеки в OpenFOAM v1912

Модели расчета коэффициента сопротивления капли Cd

• Модель Хабаши (1999)

 $C_{D} = \begin{cases} 24/Re_{d} \left(1 + 0.15Re_{d}^{0.687} + 2.6 \cdot 10^{-4}Re_{d}^{1.38}\right), & Re_{d} \leq 1300; \\ 0.4, & Re_{d} > 1300. \end{cases}$ • Модель Приходько (2013)

$$C_D = 21,12/Re_d + 6,3Re_d^{-0,5} + 0,25.$$

• Модель Гент (2000)

$$C_D = \begin{cases} 24/Re_d \left(1 + 0.197Re_d^{0.63} + 2.6 \cdot 10^{-4}Re_d^{1.38}\right), & Re_d \le 1000; \\ 0.4, & Re_d > 1000. \end{cases}$$

• Модель Очкова (2014) $C_D = \begin{cases} 24/Re_d, & Re_d < 4; \\ 12/Re_d, & 4 \le Re_d < 576; \\ 0,5, & Re_d \ge 576. \end{cases}$

Коэффициент теплоотдачи

- Из решения системы ДУ (энергии + движения 1) неразрывности); Используя теории подобия (зная Re, Pr, Gr ... Nu) и $h = \frac{Q}{F(t_n - t)}$, BT/(M²K) неразрывности);
- 2) размерностей;
- 3) Экспериментально.

$$Nu = \frac{hL}{k_f}$$

 k_f – коэффициент теплопроводности среды (теплоносителя);

- *h* коэффициент теплоотдачи конвекции;
- L характерный размер.

$$Nu = f(x^*, Re_p, Pr),$$

Модель	Число <i>Nu</i>				
Whitaker	$2 + \left(0,4 \cdot Re_p^{\frac{1}{2}} + 0,06 \cdot Re_p^{\frac{2}{3}}\right) Pr^{0,4}$				
Ranz- Marshall	$2 + 0,6Re_p^{1/2}Pr^{1/3}$				
Feng	$0,922 + Pe^{1/3} + 0,1 \cdot Re_p^{1/3} Pe^{1/3}$				
Clift	$1 + (1 + Pe)^{1/3}$				

Расчет коэффициента теплоотдачи htc для границы воздух-лед

 $h_c = \operatorname{St} \rho_e c_{p_e} |\boldsymbol{q}_e|$

St =
$$\frac{0.2926\sqrt{v_e}}{|q_e|\text{Pr}}\sqrt{|q_e|^{2.87}/\int_0^s |q_e|^{1.87}ds}$$

Ламинарный п.с. Модель Smith & Spalding

$$St = \frac{C_{fs,r}/2}{Pr_t + \sqrt{C_{fs,r}/2}/St_k} \qquad St_k = 1.92Pr^{-0.8}Re_k^{-0.45} \qquad Re_k = \frac{k_s u_\tau}{v_e}.$$

Аналогия Рейнольдса

$$\frac{C_{fs,r}}{2} = \frac{0.168}{\left(\log\left(864\theta_{ss}/k_s + 2.568\right)\right)^2}$$

Турбулентный п.с. с шероховатостью

Модель ONERA, коды IGLOO2D/3D

Тестовые примеры. Приложение С.

Эксперимент с обтеканием цилиндра

NASA Technical Memorandum 106461, AIAA-94-0718. Rime-, Mixed- and Glaze-Ice Evaluations of Three Scaling Laws

1.3 7.8

(b) Mixed Ice; Cylinder Diam., 5.1 cm (2 in); Total Temp., -8°C (18°F); Droplet Median Volume Diam., 20 µm.

g/m³ min

.4 25.4 5 20.3

7

14.5

(c) Glaze Ice; Cylinder Diam., 5.1 cm (2 in); Total Temp., -8°C (18°F); Droplet Median Volume Diameter, 30 µm. Figure 4. Scaling With LWC x Time = Constant. Velocity, 94 m/s (210 mph); LWC x 7, 10.15 g min/m³.

Тестовая задача с цилиндром. Случаи с Glaze ice (3a), Rime ice 4a.

Многоблочная сетка построена в Gmsh. Re=1.4 x 10e6

Расчет обтекания цилиндра с пленкой льда при t=10 с.

Решатель – reactingParcelSWIMFoam.

Расчет и сравнение с данными эксперимента

- Диаметр цилиндра 0.152 м.
- Скорость газа и частиц во входном сечении 94 м/с, температура 247 К.
- Диаметр капель 30 микрон.
- Вводится 0.1 кг за 100 секунд.
- Частицы вводятся только напротив цилиндра с шагом по вертикали 1 мм, как это видно из картинки, соответствующей 72 с.
- Одна секунда модельного времени рассчитывается за 2.5 часа на 12 ядрах. 12300 ячеек.
- Через 85 с модельного времени максимальная толщина слоя льда 0.04 м.
- На самом деле со временем мало что меняется, кроме толщины льда на поверхности цилиндра.
- <u>Кривые</u>: модель SWIM (синяя кривая) в сравнении с экспериментальными данными (красная кривая)
- Решатель iceFoam (reactingParcelSWIMFoam)

(a) Rime Ice; Cylinder Diam., 15.2 cm (6 in); Total Temp., -26°C (-14°F); Droplet Median Volume Diam., 30 μm.

Результаты расчета "rime ice" в iceFoam

Первый раз расчет обледенения цилиндра закончился, как планировался. Использовали большую водность: LWC ~ 100 г/м3.

Расчет достаточно было выполнить по времени до t=5 c, что заняло всего 7 часов компьютерного времени на 12 ядрах.

На картинках схематичное изображение слоя льда и сетка, на которой наглядно видна необходимость движения задней стенки пленки.

Результаты расчета "glaze ice" в iceFoam

Экспериментальные результаты намерзания льда на цилиндре с параметрами: Диаметр цилиндра 0.152 м (6 дюймов), температура - 8°С, LWC 1.3 г/м³, время 7,8 мин, медианный диаметр капель 30 мкм, скорость 94 м/с.

Толщина льда и расчетная сетка через 125 с модельного времени.

Коэффициент теплоотдачи взят равным 2000 Вт/(м2 К)

Картина результатов моделирования намерзания льда (rime ice)

Слева - движение сетки методом биссектрис, справа - по нормали начального цилиндра.

Расчётные случаи для NACA0012: rime Ice

Shin J. and Bond T., Experimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil, NASA Technical Manual 105743, 1992. Shin J. and Bond T., Result of an Icing Test on a NACA 0012 Airfoil in the NASA Lewis Icing Research Tunnel. 30th Aerospace Sciences Meeting & Exhibit, 1992.

Расчётная сетка и задание ГУ

Настройка параметров для жидких частиц

constant/parcelInjectionProperties

```
// (x y z) (u v w) d rho mDot T Cp (Y0..Y2) (Yg0..YgN) (Yl0..YlN) (Ys0..YsN)
     (-0.76 -0.0076 -0.100) (67.04 0 0) 20e-6 1000 0.002 247
                                                                4200 (0 1 0)
     (-0.76 -0.0076 -0.098) (67.04 0 0) 20e-6 1000 0.002 247
                                                                4200 (0 1 0) ()
     (-0.76 -0.0076 -0.096) (67.04 0 0) 20e-6 1000 0.002 247 4200 (0 1 0) ()
     (-0.76 -0.0076 -0.094) (67.04 0 0) 20e-6 16
                                                        constant/reactingCloud1Properties
     (-0.76 - 0.0076 - 0.092) (67.04 0 0)
                                         20e-6 16
     (-0.76 -0.0076 -0.090) (67.04 0 0) 20e-6 10
     (-0.76 -0.0076 -0.088) (67.04 0 0) 20e-6 10
                                                    injectionModels
     -0.76 -0.0076 -0.086) (67.04 0 0) 20e-6 16
     -0.76 - 0.0076 - 0.084) (67.04 0 0)
                                        20e-6 16
                                                         model1
     -0.76 -0.0076 -0.082)
                             (67.0400)
                                         20e-6 10
     -0.76 - 0.0076 - 0.080)
                             (67.04\ 0\ 0)
                                         20e-6 10
                                                             type
                                                                            reactingMultiphaseLookupTableInjection;
     -0.76 - 0.0076 - 0.078)
                            (67.04\ 0\ 0)
                                         20e-6 10
                                                                              "parcelInjectionProperties";
                                                             inputFile
     -0.76 -0.0076 -0.076) (67.04 0 0) 20e-6 10
                                                                              0.360; ← _____ т [кг]
                                                             massTotal
     (-0.76 -0.0076 -0.074) (67.04 0 0) 20e-6 10
                                                             parcelBasisType mass;
 m_{1p} = \frac{m}{t} / \dot{N}
                                                             SOT
                                                                              0:
                            N_{1M^3} = \dot{N}/v/A
                                                                              "parcelInjectionProperties";
                                                             inputFile
                                                                             360.0; → t [c]
                                                             duration
                                                             parcelsPerSecond 3600;
                                                                                      _____ 
<u>/</u> / [част/с]
          LWC[\kappa\Gamma/M^3] = m_{1p} * N_{1M^3}
                                                             randomise
                                                                              true:
v – скорость вылета частиц, м/с
А – площадь сечения через которое вылетают частицы, м<sup>2</sup>
```

Результаты расчета для NACA0012

$$V = 67 \text{ m/c}, LWC = 1 \text{ r/m}^3$$

Результаты расчета для NACA0012

V = 103 m/c, LWC = 0.55 r/m³

Результаты расчета для случая "rime ice"

V = 67 m/s, LWC = 1 g/m³

 $V = 103 \text{ m/s}, LWC = 0.55 \text{ g/m}^3$

t = 0.8 c dt \approx 1e-5 Trun = 18 hours (8 cores) Nparcels = 20250 Particples per parcel \approx 600 t = 0.4 c dt ≈ 1e-5 T run = 20 hours (4 cores) Nparcels = 16155 Particples per parcel ≈ 600 Результаты расчета намерзания льда на профиле NACA0012 за 25с. Исходный проект NACA00122D_4deg_T255_V103_LWC055.

- 0.015 - 0.014 - 0.013 - 0.012 - 0.011 - 0.019 - 0.009 - 0.006 - 0.005 - 0.004 - 0.003 - 0.002

Масштабируемость решателя iceFoam для NACA0012

Тестовый пример с 3D крылом

<u>NACA 0012 профиль</u>

- d_{мин}=5е-6 м
- d_{макс}=5е-4 м
- V_{возд}=102 м/с
- Т_{возд}=244 К
- α=4°
- М_{возд}=0,3
- Р_{возд}=9е5 Па
- 3D крыло
- Сетка в Salome/ snappyHexMesh
- 1.5 млн ячеек

Заключение

- Разработан прототип решателя iceFoam
- Решены тестовые задачи с обледенение цилиндра, симметричного профиля NACA0012
- Проведены расчеты на вычислительном кластере ИСП РАН и получена кривая масштабируемости решателя iceFoam
- Сформулированы 3D тестовые задачи
- Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-29-13016

Дополнительные слайды

Модели коэффициента сопротивления капли

- Модель Шиллера-Неймана (1935)
- Модель Хабаши (1999)
- Модель Приходько (2013)
- Модель Гент (2000)
- Модель Очкова (2014)
- Модель Путнэма

Коэффициент теплоотдачи

- Из решения системы ДУ (энергии + движения 1) неразрывности); $h = \frac{Q}{F(t_p - t)}, BT/(M^2K)$ Используя теории подобия (зная Re, Pr, Gr ... Nu) и
- 2) размерностей;
- Экспериментально. 3)

Уравнение баланса энергии капли:

Тепловой поток от окружающей среды:

$$m_p \frac{dh_p}{dt} = q_T S_p - \dot{m}_p L, \qquad q_T = \frac{\pi \lambda D_p h d_p}{k_f m_p C_{p,p}} (T - T_p),$$

Недостатки модели SWIM

- Как видно, модель качественно смогла воспроизвести немонотонное распределение льда на поверхности цилиндра.
- Аварийное завершение произошло из-за того, что лед стал нарастать таким образом, что появилось направление по лучу из центра цилиндра, на котором имеется чередование лед-газ-лед-газ.
- Примитивная технология изменения внутренней (!) границы пленки привело к нарушению топологии (внутри одной ячейки ребра пересеклись между собой).
- К тому же, при таком чередовании становится малопонятным смысл величины "толщина льда", которая в модели SWIM отсчитывается от поверхности обтекаемого тела.

Гидродинамика Extended Messinger Model

$$\mu_{w} \frac{\partial^{2} u}{\partial z^{2}} = \frac{\partial p}{\partial x} - \rho_{w} g \hat{\mathbf{g}} \cdot \hat{\mathbf{x}} + \mathcal{O}(\epsilon^{2}, \epsilon^{2} Re),$$
$$\mu_{w} \frac{\partial^{2} v}{\partial z^{2}} = \frac{\partial p}{\partial y} - \rho_{w} g \hat{\mathbf{g}} \cdot \hat{\mathbf{y}} + \mathcal{O}(\epsilon^{2}, \epsilon^{2} Re),$$
$$0 = \frac{\partial p}{\partial z} - \rho_{w} g \hat{\mathbf{g}} \cdot \hat{\mathbf{z}} + \mathcal{O}(\epsilon^{2}, \epsilon^{2} Re),$$
$$\nabla \cdot \mathbf{u} = 0,$$

$$\mu_{w}\frac{\partial u}{\partial z} = A_{1} + \mathcal{O}(\epsilon^{2}), \quad \mu_{w}\frac{\partial v}{\partial z} = A_{2} + \mathcal{O}(\epsilon^{2}), \qquad w|_{z=b} = \left(1 - \frac{\rho_{i}}{\rho_{w}}\right)\frac{\partial b}{\partial t},$$
$$p - p_{a} = -\sigma\nabla^{2}(b+h) + \mathcal{O}(\epsilon^{2}) \quad w|_{z=b+h} = \left(1 - \frac{\rho_{A}}{\rho_{w}}\right)\left(\frac{\partial b}{\partial t} + \frac{\partial h}{\partial t}\right) + u\left(\frac{\partial b}{\partial x} + \frac{\partial h}{\partial x}\right) + v\left(\frac{\partial b}{\partial y} + \frac{\partial h}{\partial y}\right) - \frac{\rho_{A}}{\rho_{w}}\beta W.$$

$$\frac{\partial h}{\partial t} + \nabla \cdot \mathbf{Q} = \frac{\rho_A}{\rho_w} \beta W - \frac{\rho_i}{\rho_w} \frac{\partial b}{\partial t}$$
$$\mathbf{Q} = \left(-\frac{h^3}{3\mu_w} \left[\frac{\partial p}{\partial x} + G_1 \right] + \frac{h^2}{2\mu_w} A_1, \quad -\frac{h^3}{3\mu_w} \left[\frac{\partial p}{\partial y} + G_2 \right] + \frac{h^2}{2\mu_w} A_2, \quad 0 \right)$$

Spalart-Allmaras model

$$\frac{D\tilde{v}}{Dt} = cb_1 [1 - f_{t2}] \tilde{S}\tilde{v} + \frac{1}{\sigma \operatorname{Re}_{\infty}} \Big[\nabla \cdot \left((v + \tilde{v}) \nabla \tilde{v} \right) + cb_2 (\nabla \tilde{v})^2 \Big] \\ - \frac{1}{\operatorname{Re}_{\infty}} \Big[c_{w1} f_w - \frac{cb_1}{\kappa^2} f_{t2} \Big] \Big[\frac{\tilde{v}}{d} \Big]^2 + \operatorname{Re}_{\infty} f_{t1} (\Delta U)^2$$

where d is the distance to the nearest wall. The model has been tuned so that, close to solid surfaces but outside the viscous region, it fits the logarithmic region, i.e.

$$\tilde{\nu} = u_\tau \kappa d \qquad \tilde{S} = \frac{u_\tau}{\kappa d} \tag{2}$$

where u_{τ} is the friction velocity based upon the wall friction τ_w $(u_{\tau} = \sqrt{\tau_w/\rho})$ and κ the von Kármán constant. The turbulent viscosity ν_t is linked to the transported variable $\tilde{\nu}$ by

$$\nu_t = f_{v1}\tilde{\nu}, \qquad f_{v1} = \frac{\chi^3}{\chi^3 + c_{v1}^3}, \qquad \chi = \frac{\tilde{\nu}}{\nu}$$
 (3)

and \tilde{S} is linked to the vorticity S (which reduces to $\left|\frac{\partial u}{\partial u}\right|$ in thin shear flows), by

$$\tilde{S} = S + \frac{\nu}{\kappa d^2} f_{\nu 2}, \qquad f_{\nu 2} = 1 - \frac{\chi}{1 + \chi f_{\nu 1}}.$$
 (4)

Finally, f_w is a function of the ratio $r \equiv \tilde{\nu}/(\tilde{S}\kappa^2 d^2)$, and both equal unity in the log layer.

B. Aupoix and P.R. Spalart. Extensions of the Spalart-Allmaras turbulence model to account for wall roughness. International Journal of Heat and Fluid Flow, 24(4):454 – 462, 2003. doi: 10.1016/S0142-727X(03)00043-2.

Modified Spalart-Allmaras model

To achieve good predictions for smaller roughnesses, the f_{v1} function in equation (3) is altered by modifying χ as $\tilde{\nu}$ h.

$$\chi = \frac{\nu}{\nu} + c_{R1} \frac{n_s}{d}, \qquad c_{R1} = 0.5 \tag{11}$$

impose a shift $d = d_{min} + d_0$ where d_{min} is the distance to the wall and $d_0(h_s)$ a shift that will be adjusted.

Identification of these two velocity profile expressions yields $d_0 = \exp(-8.5\kappa)h_s \approx 0.03h_s.$

Моделирование nut на стенке

NACA 0012 chord = 21 in = 53.34 см

Number	Run Number	T (F)	Static T (K)	A.O.A.	LWC (g/m3)	MVD (microns)	Spray time (min)	Velocity (m/s)
1	401	28	265.37	4	0.55	20	7	102.8
2	402	25	263.71	4	0.55	20	7	102.8
3	403	22	262.04	4	0.55	20	7	102.8
4	404	12	256.49	4	0.55	20	7	102.8
5	405	1	250.37	4	0.55	20	7	102.8
6	406	26.2	264.37	4	0.40	20	9.8	102.8
7	407	11.7	256.32	4	0.40	20	9.8	102.8
8	408	22	262.04	4	0.86	20	4.5	102.8
9	409	22?	265.07	4	1.30	30	6	67.1
10	410	22	262.04	4	0.55	20	3.5	102.8
11	411	22	262.04	4	0.55	20	14	102.8
12	412	21.1	261.52	4	0.47	30	8.2	102.8
13	413	21.4	261.71	4	0.50	40	7.7	102.8
14	414	22	262.04	4	0.55	25	7	102.8
15	415	22	262.04	4	0.60	15	6.4	102.8
16	421	25	268.40	4	1.00	20	6	67.1
17	422	22	266.74	4	1.00	20	6	67.1
18	423	22	265.07	4	1.00	20	6	67.1
19	424	12	259.51	4	1.00	20	6	67.1
20	425	-15	244.51	4	1.00	20	6	67.1
21	426	22	265.07	4	1.06	30	6	67.1
22	427	22	265.05	4	1.30	30	6	67.1
23	428	22 ?	265.07	4	1.60	30	6	67.1
24	429	22	262.04	4	0.86	40	4.5	102.8

W. B. Wright. Validation results For LEWICE 2.0 1997. 679 p.

Особенности запуска решателя iceFoam

Запуск с пленкой в параллельном режиме

decomposePar decomposePar -region wallFilmRegion

reconstructPar reconstructPar -region wallFilmRegion

Отображение толщины пленки в Paraview

Расчетный случай из статьи "M. Papadakis et al. Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings, and an S-Duct Engine Inlet. 2003."

Расчетный случай

Расчетная область и сетка для 3D стреловидного крыла

~450e3 cells (40 40 40)

Решение задачи аэроупругости для лопасти ветроустановки NREL 5 MWt в пакетах OpenFOAM и Code Aster

Нестационарный аэродинамический расчет с подвижной сеткой

Начальное поле скоростей

Начальные поля давлений Сечения x = 12 м, x = 24 м, x = 36 м, x = 48 м

Модель турбулентности: Detached Eddy Simulation на основе RANS Spalart-Allmaras модели

Изменение давления вблизи точки А