
Methods and software tools for analysis of
binary code security

V. Padaryan, M. Solovyev, A. Getman, K. Batuzov,
V. Efimov, M. Bakulin, S. Panasenko, O. Goremykin

{vartan, eyescream, thorin, batuzovk,
real, bakulinm, spanasenko, goremykin}@ispras.ru

Yerevan – May 3 – 2017

Binary code analysis: goals and objects

• Exploring the software properties in the absence of source
code
– Control of absence of undeclared features
– Identifying software defects
– Evaluation of the influence of a software defect on software

security
– Network protocols recovery

• Behavior monitoring of deployed system while its operating
– 0-day exploit detection
– Compliance with security policies

• Network security
– Analyzing new types of network attacks in high-speed traffic

2

Challenges for binary code analysis

3

Andrew Baumann (Microsoft Research).
Hardware is the new software. // 16th Workshop
on Hot Topics in Operating Systems, May 2017

• The ideal analysis tool
– Write once, analyze everything

sorry for WORA «plagiarism»

– The requirement is hardly compatible with the real objects of analysis

• A significant amount of analyzed code
– A typical firmware size is about several MB
– A typical PC or mobile application size (including libraries) is about 10-100 MB

or more

• The executable code is built by optimizing compilers;
often code obfuscation is used

• Permanent extension of the x86 ISA
– 23 ISA extensions for 2011-2016
– Most of them are system

commands implementing security
features
• VT-x, VT-d, SVN, SGX, MPХ, CET

• IoT
– A lot of different SoCs and CPUs

Responding To Challenges
Four base (compiler) technologies (1/2)

1. The combination of dynamic and static analysis allows to
overcome their generic limitations
– Dynamic analysis reveals the real code and data, the actual values of

variables and their addresses
– Static representation of the program is better perceived by people and

fully represents implemented algorithms

2. The analyzed code is executed in a controlled environment –
a software emulator with built-in analysis tools
– Debug interfaces in the hardware can be disabled or even physically

blocked.
The emulator always allows to observe the executed code "from the
outside."

– A mandatory and minimal requirement for emulation is the availability of
a ISA description.

– If the available description of the periphery, it’s possible to build a
complete VM.

– In the emulator, it is possible to precisely reproduce the once observed
program execution, analyzing the code replay in various ways.

– It's possible to capture all data flows in the computer system 4

Responding To Challenges
Four base (compiler) technologies (2/2)

3. Data and control flows revealing at the level of machine
instructions
– The classical compiler theory is applicable (after certain modifications and

improvements) to represent and analyze the properties of binary code
– Opens the ability to automatically extract the algorithm processing certain

input data from the total mass of program code
– The approach is applicable even if the flow of data goes into another

process or the OS kernel

4. Intermediate representation (IR) allows to analyze the data flows,
abstracting from the hardware complexity
– The code of the various CPUs is translated into a convenient for automatic

analysis and a uniform IR
– Conventional compiler representations (llvm and others) are poorly

applicable, because when translating, they require a high level knowledge
of the program (variable types, control statements and so on)

– Specialized IR are used: Pivot, VEX, REIL, BAP, …

5

Can we start working on a security task
immediately?

6

Development
of analysis

tools

Reverse
engineering

Debugging &
improving of
analysis tools

Reverse
engineering

Result!

Binary code analysis environment
Lifting the binary code representation level

Algorithm
reverse

engineering
Bug finding

Protocol reverse
engineering

Executing the analyzed program in a completely controlled
environment (software emulator)

• In the absence of a ready-made and well-functioning tools, it’s necessary
to iteratively improve the existing toolkit before the end-user applied
problems (RE & bug finding) begin to be solved.

• Special tools for rapid development of analysis tools are also demanded.

Qemu – the basis for dynamic analysis

7

Dynamic binary translator TCG + deterministic replay

Automated development of new virtual machines

Peripherals

Taint analysis Debugging Tracing

Honeypot
Extendable OS-
aware debugger

Behavioral
analysis

Reproducible user
environment

QEMU emulation
engine

Analysis
technologies

Tools to solve
practical problems

CPU

Extensibility of
analysis tools

Integration of VM
components

Analysis plugin infrastructure

Extensibility of a
supported VMs

Virtual Machine deterministic replay

• The problem: a "heavyweight" analysis (debugging, step-by-step tracing, etc.)
leads to a dramatic VM slowdown. If the code being analyzed interacts with the
"outside world", the code behavior inevitably changes.

• Deterministic replay guarantees a repeat of execution with an accuracy of a single
machine instruction. The record overhead is limited to 10-50%.

• Record/replay was implemented in leading commercial emulators:
SimNow, Simics, Synopsys Virtual Platform

• Qemu contains a record/replay engine developed by ISP RAS
(first patch set was included into v2.5, full RR support – v2.8)

8

Replay for register transfer level (RTL)

Accelerated VM development

9

• What if a software security analysis
faces a new hardware platform?
• Build and analysis tools

(translators, debugger,
disassembler, …)

• emulator
• The stage with critical and poorly

predictable duration – the
development of a new virtual
machine.
• CPU
• Various peripherals
• VM component integration

Qemu development tools (periphery and VM integration) are free software,
available at https://github.com/ispras/qdt

Protection against malicious software
distributed in e-documents

10

• Identifying violations of basic security properties allows to protect the workplace with
fixed set of applications from 0-day vulnerabilities.

• Reference tool – commercially available system SandBlast by Check Point
• A lot of similar open source systems (TEMU, DECAF, Argos, Panda, TaintCheck,

TaintDroid, …) have only academic value and are inapplicable for practical use.
• ISP RAS scientists proposed a method for warning ranking, reducing the percentage of

false positives.
Maksim Bakulin, Maria Klimushenkova and Danila Egorov. Dynamic Diluted Taint Analysis
for Evaluating Detected Policy Violations. // Ivannikov ISPRAS Open Conference 2017

11

Lifting the Representation Level

«Мета PDS»: code merging from different traces, building
relocatable (module based) code, closure of edges in IR

Function recovery

PDS (Pushdown System)
Static representation / Code generations

Module identification

StaticMem

Call-Ret matching

Interrupt recovery

Thread / Process / Zone markup

12

Binary code trace

High level algorithm representation

13

• Extraction of the algorithm from binary code
when searching for undeclared feature
– Description of input and output, dependencies

between them

– Description of operations over data

– Network protocols and data format recovery

1. Preliminary lifting
the representation level
– Automatic recovery of the static

representation of the machine
instruction level by traces

2. Man-driven algorithm
extraction and description
– Checking the actual

behavior of the described
code

Data format recovery by dynamic analysis

14

Network traffic analysis for
poorly documented protocols

15

Future works and next decade challenges

• HW virtualization based controlled execution environment: better
performance, better VM authenticity
– Xen, KVM, …

• New Pivot2 IR: constructed from binary code, suitable for abstract
interpretation by design

• New, «micro service architected», analysis environment TRAWL

• How to analyze hardware assisted security: secure boot chain, SGX
enclaves, … ?

• How to analyze code while some hardware interfaces are totally
undocumented?

• How to formally describe errors that are slightly more complex than
buffer overflow or null pointer?

16

